mikr's picture
update model card README.md
61f98b1
|
raw
history blame
2.05 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_11_0
metrics:
  - wer
model-index:
  - name: openai/whisper-large
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_11_0
          type: common_voice_11_0
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 10.82782615098577

openai/whisper-large

This model is a fine-tuned version of openai/whisper-large on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2528
  • Wer: 10.8278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0058 4.02 1000 0.2097 11.9563
0.0012 8.04 2000 0.2210 10.9751
0.001 13.01 3000 0.2405 11.3488
0.0002 17.02 4000 0.2467 10.8794
0.0001 21.04 5000 0.2528 10.8278

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2