Add model card

#1
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +4 -101
README.md CHANGED
@@ -1,106 +1,9 @@
1
  ---
2
  license: mit
3
- license_link: https://github.com/microsoft/VidTok/blob/main/LICENSE
4
-
5
- tags:
6
- - tokenization
7
- - video generation
8
- - world model
9
- - vae
10
- - fsq
11
  ---
12
 
13
- # VidTok
14
- A Family of Versatile and State-Of-The-Art Video Tokenizers
15
-
16
- <img src="./assets/radar.png" width="95%" alt="radar" align="center">
17
-
18
- VidTok is a cutting-edge family of video tokenizers that delivers state-of-the-art performance in both continuous and discrete tokenizations with various compression rates. VidTok incorporates several key advancements over existing approaches:
19
- * ⚡️ **Efficient Architecture**. Separate spatial and temporal sampling reduces computational complexity without sacrificing quality.
20
- * 🔥 **Advanced Quantization**. Finite Scalar Quantization (FSQ) addresses training instability and codebook collapse in discrete tokenization.
21
- * 💥 **Enhanced Training**. A two-stage strategy—pre-training on low-res videos and fine-tuning on high-res—boosts efficiency. Reduced frame rates improve motion dynamics representation.
22
-
23
- VidTok, trained on a large-scale video dataset, outperforms previous models across all metrics, including PSNR, SSIM, LPIPS, and FVD.
24
-
25
- <video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/619b7b1cab4c7b7f16a7d59e/4v2I2YAZJeWSnd7iqntGX.mp4"></video>
26
-
27
- Resources and technical documentation:
28
-
29
- + [GitHub](https://github.com/microsoft/VidTok)
30
- + [arXiv](https://arxiv.org/pdf/2412.13061)
31
-
32
-
33
- ## Model Performance
34
-
35
- The following table shows model performance evaluated on 30 test videos in [MCL_JCL](https://mcl.usc.edu/mcl-jcv-dataset/) dataset, with a sample fps of 30. The input size is `17x256x256` for causal models and `16x256x256` for non-causal models. `VCR` indicates the video compression ratio `TxHxW`.
36
-
37
- | Model | Regularizer | Causal | VCR | PSNR | SSIM | LPIPS | FVD |
38
- |------|------|------|------|------|------|------|------|
39
- | [vidtok_kl_causal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_4chn.ckpt) | KL-4chn | ✔️ | 4x8x8 | 29.64 | 0.852| 0.114| 194.2|
40
- | [vidtok_kl_causal_488_8chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_8chn.ckpt) | KL-8chn | ✔️ |4x8x8 | 31.83 | 0.897| 0.083| 109.3|
41
- | [vidtok_kl_causal_488_16chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_488_16chn.ckpt) | KL-16chn | ✔️ | 4x8x8 | 35.04 |0.942 |0.047 | 78.9|
42
- | [vidtok_kl_causal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_causal_41616_4chn.ckpt) | KL-4chn | ✔️ | 4x16x16 | 25.05 | 0.711| 0.228| 549.1| |
43
- | [vidtok_kl_noncausal_488_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_488_4chn.ckpt) | KL-4chn | ✖️ | 4x8x8 | 30.60 | 0.876 | 0.098| 157.9|
44
- | [vidtok_kl_noncausal_41616_4chn](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_kl_noncausal_41616_4chn.ckpt) | KL-4chn | ✖️ | 4x16x16 | 26.06 | 0.751 | 0.190|423.2 |
45
- | [vidtok_fsq_causal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_262144.ckpt) | FSQ-262,144 | ✔️ | 4x8x8 | 29.82 | 0.867 |0.106 | 160.1|
46
- | [vidtok_fsq_causal_488_32768](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_32768.ckpt) | FSQ-32,768 | ✔️ | 4x8x8 | 29.16 | 0.854 | 0.117| 196.9|
47
- | [vidtok_fsq_causal_488_4096](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_488_4096.ckpt) | FSQ-4096 | ✔️ | 4x8x8 | 28.36 | 0.832 | 0.133| 218.1|
48
- | [vidtok_fsq_causal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_causal_41616_262144.ckpt) | FSQ-262,144 | ✔️ | 4x16x16 | 25.38 | 0.738 |0.206 | 430.1|
49
- | [vidtok_fsq_noncausal_488_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_488_262144.ckpt) | FSQ-262,144 | ✖️ | 4x8x8 | 30.78 | 0.889| 0.091| 132.1|
50
- | [vidtok_fsq_noncausal_41616_262144](https://huggingface.co/microsoft/VidTok/blob/main/checkpoints/vidtok_fsq_noncausal_41616_262144.ckpt) | FSQ-262,144 | ✖️ | 4x16x16 | 26.37 | 0.772| 0.171| 357.0|
51
-
52
- ## Training
53
- ### Training Data
54
-
55
- The training data of VidTok is divided into two sets based on video quality.
56
- 1. Training Set 1 consists of approximately 400K of low-resolution videos (e.g., 480p). The videos are natural videos with diverse lightning, motions, and scenarios.
57
- 2. Training Set 2 includes approximately 10K of high-resolution videos (e.g., 1080p). The videos are natural videos with diverse lightning, motions, and scenarios.
58
-
59
- ### Training Procedure
60
-
61
- Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed training instructions.
62
-
63
- ## Evaluation
64
-
65
- Please refer to the [paper](https://arxiv.org/pdf/2412.13061) and [code](https://github.com/microsoft/VidTok) for detailed evaluation instructions.
66
-
67
- ## Intended Uses
68
-
69
- We are sharing our model with the research community to foster further research in this area:
70
- * Training your own video tokenizers for research purpose.
71
- * Video tokenization with various compression rates.
72
-
73
- ## Downstream Uses
74
-
75
- Our model is designed to accelerate research on video-centric research, for use as a building block for the following applications:
76
- * Video generation on the continuous / discrete latent tokens.
77
- * World modelling on the continuous / discrete latent tokens.
78
- * Generative games on the continuous / discrete latent tokens.
79
- * Video understanding from the latent tokens.
80
-
81
- ## Out-of-scope Uses
82
-
83
- Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of video tokenizers (e.g., performance degradation on out-of-domain data) as they select use cases, and evaluate and mitigate for privacy, safety, and fairness before using within a specific downstream use case, particularly for high-risk scenarios.
84
-
85
- Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
86
-
87
- ## Risks and Limitations
88
-
89
- Some of the limitations of this model to be aware of include:
90
- * VidTok may lose detailed information on the reconstructed content.
91
- * VidTok inherits any biases, errors, or omissions characteristic of its training data.
92
- * VidTok was developed for research and experimental purposes. Further testing and validation are needed before considering its application in commercial or real-world scenarios.
93
-
94
- ## Recommendations
95
-
96
- Some recommendations for alleviating potential limitations include:
97
- * Lower compression rate provides higher reconstruction quality.
98
- * For domain-specific video tokenization, it is suggested to fine-tune the model on the domain-specific videos.
99
-
100
- ## License
101
-
102
- The model is released under the [MIT license](https://github.com/microsoft/VidTok/blob/main/LICENSE).
103
-
104
- ## Contact
105
 
106
- We welcome feedback and collaboration from our audience. If you have suggestions, questions, or observe unexpected/offensive behavior in our technology, please contact us at tianyuhe@microsoft.com.
 
1
  ---
2
  license: mit
3
+ library_name: diffusers
4
+ pipeline_tag: video-to-video
 
 
 
 
 
 
5
  ---
6
 
7
+ This repository contains the model presented in the paper [VidTwin: Video VAE with Decoupled Structure and Dynamics](https://huggingface.co/papers/2412.17726).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ Code: https://github.com/microsoft/VidTok/tree/main/vidtwin.