mgfrantz commited on
Commit
b1b6ada
·
verified ·
1 Parent(s): 05abcae

End of training

Browse files
Files changed (2) hide show
  1. README.md +142 -190
  2. adapter_model.bin +1 -1
README.md CHANGED
@@ -1,202 +1,154 @@
1
  ---
2
  base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
  library_name: peft
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
- - PEFT 0.13.0
 
 
 
 
 
1
  ---
2
  base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
  library_name: peft
4
+ license: apache-2.0
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: axolotl-test
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
 
22
+ # Model config
23
+ adapter: qlora
24
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
25
+ bf16: auto
26
+
27
+ # HF hub config (push to huggingface)
28
+ # requires HF_TOKEN api key to be set (👈🔑secrets)
29
+ hf_use_auth_token: true
30
+ hub_model_id: mgfrantz/axolotl-test
31
+ mlflow_experiment_name: axolotl-test
32
+
33
+ # Data config
34
+ dataset_prepared_path: null
35
+ datasets:
36
+ - path: mhenrichsen/alpaca_2k_test
37
+ type: alpaca
38
+
39
+ # Training config
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: null
43
+ eval_sample_packing: false
44
+ evals_per_epoch: 4
45
+ flash_attention: true
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 4
50
+ gradient_checkpointing: true
51
+ group_by_length: false
52
+
53
+
54
+ learning_rate: 0.0002
55
+ load_in_4bit: true
56
+ load_in_8bit: false
57
+ local_rank: null
58
+ logging_steps: 1
59
+ lora_alpha: 16
60
+ lora_dropout: 0.05
61
+ lora_fan_in_fan_out: null
62
+ lora_model_dir: null
63
+ lora_r: 32
64
+ lora_target_linear: true
65
+ lora_target_modules: null
66
+ lr_scheduler: cosine
67
+ micro_batch_size: 8
68
+ model_type: LlamaForCausalLM
69
+ num_epochs: 4
70
+ optimizer: paged_adamw_32bit
71
+ output_dir: ./outputs/qlora-out
72
+ pad_to_sequence_len: true
73
+ resume_from_checkpoint: null
74
+ sample_packing: true
75
+ saves_per_epoch: 1
76
+ sequence_len: 4096
77
+ special_tokens: null
78
+ strict: false
79
+ tf32: false
80
+ tokenizer_type: LlamaTokenizer
81
+ train_on_inputs: false
82
+ val_set_size: 0.05
83
+ wandb_entity: null
84
+ wandb_log_model: null
85
+ wandb_name: null
86
+ wandb_project: null
87
+ wandb_watch: null
88
+ warmup_steps: 10
89
+ weight_decay: 0.0
90
+ xformers_attention: null
91
+
92
+ ```
93
+
94
+ </details><br>
95
+
96
+ # axolotl-test
97
+
98
+ This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
99
+ It achieves the following results on the evaluation set:
100
+ - Loss: 1.3119
101
+
102
+ ## Model description
103
+
104
+ More information needed
105
+
106
+ ## Intended uses & limitations
107
+
108
+ More information needed
109
+
110
+ ## Training and evaluation data
111
+
112
+ More information needed
113
+
114
+ ## Training procedure
115
+
116
+ ### Training hyperparameters
117
+
118
+ The following hyperparameters were used during training:
119
+ - learning_rate: 0.0002
120
+ - train_batch_size: 8
121
+ - eval_batch_size: 8
122
+ - seed: 42
123
+ - gradient_accumulation_steps: 4
124
+ - total_train_batch_size: 32
125
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
126
+ - lr_scheduler_type: cosine
127
+ - lr_scheduler_warmup_steps: 10
128
+ - num_epochs: 4
129
+
130
+ ### Training results
131
+
132
+ | Training Loss | Epoch | Step | Validation Loss |
133
+ |:-------------:|:------:|:----:|:---------------:|
134
+ | 1.4095 | 0.3333 | 1 | 1.4451 |
135
+ | 1.4009 | 0.6667 | 2 | 1.4447 |
136
+ | 1.4018 | 1.0 | 3 | 1.4426 |
137
+ | 1.3928 | 1.25 | 4 | 1.4369 |
138
+ | 1.3754 | 1.5833 | 5 | 1.4268 |
139
+ | 1.399 | 1.9167 | 6 | 1.4080 |
140
+ | 1.3767 | 2.1667 | 7 | 1.3829 |
141
+ | 1.3624 | 2.5 | 8 | 1.3579 |
142
+ | 1.3157 | 2.8333 | 9 | 1.3376 |
143
+ | 1.2913 | 3.0833 | 10 | 1.3260 |
144
+ | 1.2814 | 3.4167 | 11 | 1.3165 |
145
+ | 1.2778 | 3.75 | 12 | 1.3119 |
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
 
148
  ### Framework versions
149
 
150
+ - PEFT 0.13.0
151
+ - Transformers 4.45.0
152
+ - Pytorch 2.4.1+cu121
153
+ - Datasets 2.21.0
154
+ - Tokenizers 0.20.0
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c6428ca721e88342afe8ac870f73349695aa0dc185a13d2a30134fcba0398b9
3
  size 101036698
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0980833a4632cbba047ede4dedeb0917b87fd0d2f4cc18e618ea354f41b0814f
3
  size 101036698