See axolotl config
axolotl version: 0.5.3.dev44+g5bef1906
base_model: meta-llama/Llama-3.2-3B-Instruct
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
datasets:
- path: shuffled_output.json
type: input_output
dataset_prepared_path: last_run_prepared
dataset_exact_deduplication: false
sequence_length: 131072
pad_to_sequence_len: true
output_dir: ./models/llama_wm_v3
wandb_project: agent-v0
wandb_name: llama-3b_wm_v3
train_on_inputs: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch
learning_rate: 2e-5
xformers_attention:
flash_attention: true
logging_steps: 5
warmup_steps: 10
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json
special_tokens:
pad_token: <|end_of_text|>
models/llama_wm_v3
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the shuffled_output.json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mfirth/l3t_agi_maybe_not_garbage_2
Base model
meta-llama/Llama-3.2-3B-Instruct