Built with Axolotl

See axolotl config

axolotl version: 0.5.3.dev44+g5bef1906

base_model: meta-llama/Llama-3.2-3B-Instruct

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: shuffled_output_2.json
    type: input_output
dataset_prepared_path: last_run_prepared
dataset_exact_deduplication: false

# sequence_length: 131072
# pad_to_sequence_len: true
    
output_dir: ./models/llama_wm_v3_3

wandb_project: agent-v0
wandb_name: llama-3b_wm_v3_3

train_on_inputs: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch
learning_rate: 2e-5
xformers_attention:
flash_attention: true

logging_steps: 5

warmup_steps: 10
saves_per_epoch: 1
weight_decay: 0.0

deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json

special_tokens:
  pad_token: <|end_of_text|>

models/llama_wm_v3_3

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the shuffled_output_2.json dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
26
Safetensors
Model size
3.21B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mfirth/l3t_actually_agi_frfr

Finetuned
(190)
this model