See axolotl config
axolotl version: 0.5.3.dev41+g5e9fa33f
base_model: meta-llama/Llama-3.2-3B-Instruct
datasets:
- path: axolotl_format_data_llama_combined_wm.json
type: input_output
dataset_prepared_path: last_run_prepared
output_dir: ./models/llama_wm
sequence_length: 4096
wandb_project: agent-v0
wandb_name: llama-3b_wm
train_on_inputs: false
gradient_checkpointing: true
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
learning_rate: 2e-5
flash_attention: true
logging_steps: 5
warmup_steps: 10
saves_per_epoch: 1
weight_decay: 0.0
deepspeed: axolotl/deepspeed_configs/zero3_bf16_cpuoffload_all.json
special_tokens:
pad_token: <|end_of_text|>
models/llama_wm
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the axolotl_format_data_llama_combined_wm.json dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 160
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mfirth/agi
Base model
meta-llama/Llama-3.2-3B-Instruct