huseinzol05 commited on
Commit
b870a17
·
1 Parent(s): 4d841bb

update readme

Browse files
Files changed (1) hide show
  1. README.md +44 -4
README.md CHANGED
@@ -2,13 +2,13 @@
2
  language: ms
3
  ---
4
 
5
- # t5-base-bahasa-cased
6
 
7
- Pretrained T5 base language model for Malay.
8
 
9
  ## Pretraining Corpus
10
 
11
- `t5-base-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
 
13
  1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
  2. News title prediction on bahasa news.
@@ -26,4 +26,44 @@ Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/mast
26
  ## Pretraining details
27
 
28
  - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
29
- - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  language: ms
3
  ---
4
 
5
+ # t5-super-tiny-bahasa-cased
6
 
7
+ Pretrained T5 super-tiny language model for Malay.
8
 
9
  ## Pretraining Corpus
10
 
11
+ `t5-super-tiny-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
 
13
  1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
  2. News title prediction on bahasa news.
 
26
  ## Pretraining details
27
 
28
  - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
29
+ - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
30
+
31
+ ## Load Pretrained Model
32
+
33
+ You can use this model by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
34
+
35
+ ```python
36
+ from transformers import T5Tokenizer, T5Model
37
+
38
+ model = T5Model.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
39
+ tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
40
+ ```
41
+
42
+ ## Example using T5ForConditionalGeneration
43
+
44
+ ```python
45
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
46
+
47
+ tokenizer = T5Tokenizer.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
48
+ model = T5ForConditionalGeneration.from_pretrained('malay-huggingface/t5-small-bahasa-cased')
49
+ input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')
50
+ outputs = model.generate(input_ids)
51
+ print(tokenizer.decode(outputs[0]))
52
+ ```
53
+
54
+ Output is,
55
+
56
+ ```
57
+ 'Mahathir Mohamad'
58
+ ```
59
+
60
+ ## Supported prefix
61
+
62
+ 1. `soalan: {string}`, trained using Natural QA.
63
+ 2. `ringkasan: {string}`, for abstractive summarization.
64
+ 3. `tajuk: {string}`, for abstractive title.
65
+ 4. `parafrasa: {string}`, for abstractive paraphrase.
66
+ 5. `terjemah Inggeris ke Melayu: {string}`, for EN-MS translation.
67
+ 6. `terjemah Melayu ke Inggeris: {string}`, for MS-EN translation.
68
+ 7. `grafik pengetahuan: {string}`, for MS text to EN Knowledge Graph triples format.
69
+ 8. `ayat1: {string1} ayat2: {string2}`, semantic similarity.