huseinzol05 commited on
Commit
4d841bb
·
1 Parent(s): 660375c
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ *.ipynb_checkpoints
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ms
3
+ ---
4
+
5
+ # t5-base-bahasa-cased
6
+
7
+ Pretrained T5 base language model for Malay.
8
+
9
+ ## Pretraining Corpus
10
+
11
+ `t5-base-bahasa-cased` model was pretrained on multiple tasks. Below is list of tasks we trained on,
12
+
13
+ 1. Language masking task on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
14
+ 2. News title prediction on bahasa news.
15
+ 3. Next sentence prediction on bahasa news, bahasa Wikipedia, bahasa Academia.edu, bahasa parliament and translated The Pile.
16
+ 4. Translated QA Natural.
17
+ 5. Text Similarity task on translated SNLI and translated MNLI.
18
+ 6. EN-MS translation.
19
+ 7. MS-EN translation.
20
+ 8. Abstractive Summarization.
21
+ 9. Knowledge Graph triples generation.
22
+ 10. Paraphrase.
23
+
24
+ Preparing steps can reproduce at https://github.com/huseinzol05/malaya/tree/master/pretrained-model/t5/prepare
25
+
26
+ ## Pretraining details
27
+
28
+ - This model was trained using Google T5 repository https://github.com/google-research/text-to-text-transfer-transformer, on v3-8 TPU.
29
+ - All steps can reproduce from here, https://github.com/huseinzol05/Malaya/tree/master/pretrained-model/t5
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./pytorch_model.bin",
3
+ "architectures": [
4
+ "T5Model"
5
+ ],
6
+ "d_ff": 1024,
7
+ "d_kv": 64,
8
+ "d_model": 256,
9
+ "decoder_start_token_id": 0,
10
+ "dropout_rate": 0.1,
11
+ "eos_token_id": 1,
12
+ "feed_forward_proj": "relu",
13
+ "gradient_checkpointing": false,
14
+ "initializer_factor": 1.0,
15
+ "inputs_length": 512,
16
+ "is_encoder_decoder": true,
17
+ "layer_norm_epsilon": 1e-06,
18
+ "model_type": "t5",
19
+ "n_positions": 512,
20
+ "num_decoder_layers": 2,
21
+ "num_heads": 6,
22
+ "num_layers": 2,
23
+ "pad_token_id": 0,
24
+ "relative_attention_num_buckets": 32,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.10.0",
27
+ "use_cache": true,
28
+ "vocab_size": 32128
29
+ }
convert-from-malaya.ipynb ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {
7
+ "scrolled": true
8
+ },
9
+ "outputs": [
10
+ {
11
+ "data": {
12
+ "text/plain": [
13
+ "'4.10.0'"
14
+ ]
15
+ },
16
+ "execution_count": 1,
17
+ "metadata": {},
18
+ "output_type": "execute_result"
19
+ }
20
+ ],
21
+ "source": [
22
+ "import transformers\n",
23
+ "transformers.__version__"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type": "code",
28
+ "execution_count": 2,
29
+ "metadata": {},
30
+ "outputs": [],
31
+ "source": [
32
+ "from transformers import T5Config, T5Model, load_tf_weights_in_t5"
33
+ ]
34
+ },
35
+ {
36
+ "cell_type": "code",
37
+ "execution_count": 4,
38
+ "metadata": {},
39
+ "outputs": [
40
+ {
41
+ "name": "stdout",
42
+ "output_type": "stream",
43
+ "text": [
44
+ "checkpoint model.ckpt-1000000.index\r\n",
45
+ "model.ckpt-1000000.data-00000-of-00002 model.ckpt-1000000.meta\r\n",
46
+ "model.ckpt-1000000.data-00001-of-00002 operative_config.gin\r\n"
47
+ ]
48
+ }
49
+ ],
50
+ "source": [
51
+ "# !wget https://f000.backblazeb2.com/file/malaya-model/pretrained/t5-super-tiny-2021-07-28.tar.gz\n",
52
+ "# !tar -zxf t5-super-tiny-2021-07-28.tar.gz\n",
53
+ "# !rm t5-super-tiny-2021-07-28.tar.gz\n",
54
+ "!ls t5-super-tiny-v2"
55
+ ]
56
+ },
57
+ {
58
+ "cell_type": "code",
59
+ "execution_count": 5,
60
+ "metadata": {},
61
+ "outputs": [
62
+ {
63
+ "name": "stdout",
64
+ "output_type": "stream",
65
+ "text": [
66
+ "T5Config {\n",
67
+ " \"d_ff\": 1024,\n",
68
+ " \"d_kv\": 64,\n",
69
+ " \"d_model\": 256,\n",
70
+ " \"decoder_start_token_id\": 0,\n",
71
+ " \"dropout_rate\": 0.1,\n",
72
+ " \"eos_token_id\": 1,\n",
73
+ " \"feed_forward_proj\": \"relu\",\n",
74
+ " \"gradient_checkpointing\": false,\n",
75
+ " \"initializer_factor\": 1.0,\n",
76
+ " \"inputs_length\": 512,\n",
77
+ " \"is_encoder_decoder\": true,\n",
78
+ " \"layer_norm_epsilon\": 1e-06,\n",
79
+ " \"model_type\": \"t5\",\n",
80
+ " \"n_positions\": 512,\n",
81
+ " \"num_decoder_layers\": 2,\n",
82
+ " \"num_heads\": 6,\n",
83
+ " \"num_layers\": 2,\n",
84
+ " \"pad_token_id\": 0,\n",
85
+ " \"relative_attention_num_buckets\": 32,\n",
86
+ " \"transformers_version\": \"4.10.0\",\n",
87
+ " \"use_cache\": true,\n",
88
+ " \"vocab_size\": 32128\n",
89
+ "}\n",
90
+ "\n"
91
+ ]
92
+ }
93
+ ],
94
+ "source": [
95
+ "config = T5Config(\n",
96
+ " vocab_size = 32128,\n",
97
+ " n_positions=512,\n",
98
+ " d_ff = 1024,\n",
99
+ " d_kv = 64,\n",
100
+ " d_model = 256,\n",
101
+ " dropout_rate = 0.1,\n",
102
+ " inputs_length = 512,\n",
103
+ " num_heads = 6,\n",
104
+ " num_layers = 2,\n",
105
+ " decoder_start_token_id = 0,\n",
106
+ " eos_token_id = 1,\n",
107
+ " pad_token_id = 0)\n",
108
+ "print(config)\n",
109
+ "config.save_pretrained('./')"
110
+ ]
111
+ },
112
+ {
113
+ "cell_type": "code",
114
+ "execution_count": 6,
115
+ "metadata": {},
116
+ "outputs": [
117
+ {
118
+ "data": {
119
+ "text/plain": [
120
+ "T5Model(\n",
121
+ " (shared): Embedding(32128, 256)\n",
122
+ " (encoder): T5Stack(\n",
123
+ " (embed_tokens): Embedding(32128, 256)\n",
124
+ " (block): ModuleList(\n",
125
+ " (0): T5Block(\n",
126
+ " (layer): ModuleList(\n",
127
+ " (0): T5LayerSelfAttention(\n",
128
+ " (SelfAttention): T5Attention(\n",
129
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
130
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
131
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
132
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
133
+ " (relative_attention_bias): Embedding(32, 6)\n",
134
+ " )\n",
135
+ " (layer_norm): T5LayerNorm()\n",
136
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
137
+ " )\n",
138
+ " (1): T5LayerFF(\n",
139
+ " (DenseReluDense): T5DenseReluDense(\n",
140
+ " (wi): Linear(in_features=256, out_features=1024, bias=False)\n",
141
+ " (wo): Linear(in_features=1024, out_features=256, bias=False)\n",
142
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
143
+ " )\n",
144
+ " (layer_norm): T5LayerNorm()\n",
145
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
146
+ " )\n",
147
+ " )\n",
148
+ " )\n",
149
+ " (1): T5Block(\n",
150
+ " (layer): ModuleList(\n",
151
+ " (0): T5LayerSelfAttention(\n",
152
+ " (SelfAttention): T5Attention(\n",
153
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
154
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
155
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
156
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
157
+ " )\n",
158
+ " (layer_norm): T5LayerNorm()\n",
159
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
160
+ " )\n",
161
+ " (1): T5LayerFF(\n",
162
+ " (DenseReluDense): T5DenseReluDense(\n",
163
+ " (wi): Linear(in_features=256, out_features=1024, bias=False)\n",
164
+ " (wo): Linear(in_features=1024, out_features=256, bias=False)\n",
165
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
166
+ " )\n",
167
+ " (layer_norm): T5LayerNorm()\n",
168
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
169
+ " )\n",
170
+ " )\n",
171
+ " )\n",
172
+ " )\n",
173
+ " (final_layer_norm): T5LayerNorm()\n",
174
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
175
+ " )\n",
176
+ " (decoder): T5Stack(\n",
177
+ " (embed_tokens): Embedding(32128, 256)\n",
178
+ " (block): ModuleList(\n",
179
+ " (0): T5Block(\n",
180
+ " (layer): ModuleList(\n",
181
+ " (0): T5LayerSelfAttention(\n",
182
+ " (SelfAttention): T5Attention(\n",
183
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
184
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
185
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
186
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
187
+ " (relative_attention_bias): Embedding(32, 6)\n",
188
+ " )\n",
189
+ " (layer_norm): T5LayerNorm()\n",
190
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
191
+ " )\n",
192
+ " (1): T5LayerCrossAttention(\n",
193
+ " (EncDecAttention): T5Attention(\n",
194
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
195
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
196
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
197
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
198
+ " )\n",
199
+ " (layer_norm): T5LayerNorm()\n",
200
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
201
+ " )\n",
202
+ " (2): T5LayerFF(\n",
203
+ " (DenseReluDense): T5DenseReluDense(\n",
204
+ " (wi): Linear(in_features=256, out_features=1024, bias=False)\n",
205
+ " (wo): Linear(in_features=1024, out_features=256, bias=False)\n",
206
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
207
+ " )\n",
208
+ " (layer_norm): T5LayerNorm()\n",
209
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
210
+ " )\n",
211
+ " )\n",
212
+ " )\n",
213
+ " (1): T5Block(\n",
214
+ " (layer): ModuleList(\n",
215
+ " (0): T5LayerSelfAttention(\n",
216
+ " (SelfAttention): T5Attention(\n",
217
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
218
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
219
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
220
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
221
+ " )\n",
222
+ " (layer_norm): T5LayerNorm()\n",
223
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
224
+ " )\n",
225
+ " (1): T5LayerCrossAttention(\n",
226
+ " (EncDecAttention): T5Attention(\n",
227
+ " (q): Linear(in_features=256, out_features=384, bias=False)\n",
228
+ " (k): Linear(in_features=256, out_features=384, bias=False)\n",
229
+ " (v): Linear(in_features=256, out_features=384, bias=False)\n",
230
+ " (o): Linear(in_features=384, out_features=256, bias=False)\n",
231
+ " )\n",
232
+ " (layer_norm): T5LayerNorm()\n",
233
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
234
+ " )\n",
235
+ " (2): T5LayerFF(\n",
236
+ " (DenseReluDense): T5DenseReluDense(\n",
237
+ " (wi): Linear(in_features=256, out_features=1024, bias=False)\n",
238
+ " (wo): Linear(in_features=1024, out_features=256, bias=False)\n",
239
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
240
+ " )\n",
241
+ " (layer_norm): T5LayerNorm()\n",
242
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
243
+ " )\n",
244
+ " )\n",
245
+ " )\n",
246
+ " )\n",
247
+ " (final_layer_norm): T5LayerNorm()\n",
248
+ " (dropout): Dropout(p=0.1, inplace=False)\n",
249
+ " )\n",
250
+ ")"
251
+ ]
252
+ },
253
+ "execution_count": 6,
254
+ "metadata": {},
255
+ "output_type": "execute_result"
256
+ }
257
+ ],
258
+ "source": [
259
+ "model = T5Model(config)\n",
260
+ "load_tf_weights_in_t5(model, config, 't5-super-tiny-v2/model.ckpt-1000000')"
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "code",
265
+ "execution_count": 7,
266
+ "metadata": {},
267
+ "outputs": [
268
+ {
269
+ "data": {
270
+ "text/plain": [
271
+ "('config.json', 'pytorch_model.bin')"
272
+ ]
273
+ },
274
+ "execution_count": 7,
275
+ "metadata": {},
276
+ "output_type": "execute_result"
277
+ }
278
+ ],
279
+ "source": [
280
+ "from transformers import CONFIG_NAME, WEIGHTS_NAME\n",
281
+ "CONFIG_NAME, WEIGHTS_NAME"
282
+ ]
283
+ },
284
+ {
285
+ "cell_type": "code",
286
+ "execution_count": 8,
287
+ "metadata": {},
288
+ "outputs": [],
289
+ "source": [
290
+ "import torch\n",
291
+ "\n",
292
+ "torch.save(model.state_dict(), './' + WEIGHTS_NAME)"
293
+ ]
294
+ },
295
+ {
296
+ "cell_type": "code",
297
+ "execution_count": 9,
298
+ "metadata": {},
299
+ "outputs": [],
300
+ "source": [
301
+ "from transformers import T5Config, T5Model, T5Tokenizer"
302
+ ]
303
+ },
304
+ {
305
+ "cell_type": "code",
306
+ "execution_count": 10,
307
+ "metadata": {},
308
+ "outputs": [],
309
+ "source": [
310
+ "# !wget https://f000.backblazeb2.com/file/malaya-model/bpe/sp10m.cased.ms-en.model"
311
+ ]
312
+ },
313
+ {
314
+ "cell_type": "code",
315
+ "execution_count": 11,
316
+ "metadata": {},
317
+ "outputs": [
318
+ {
319
+ "data": {
320
+ "text/plain": [
321
+ "('./tokenizer_config.json',\n",
322
+ " './special_tokens_map.json',\n",
323
+ " './spiece.model',\n",
324
+ " './added_tokens.json')"
325
+ ]
326
+ },
327
+ "execution_count": 11,
328
+ "metadata": {},
329
+ "output_type": "execute_result"
330
+ }
331
+ ],
332
+ "source": [
333
+ "tokenizer = T5Tokenizer('sp10m.cased.ms-en.model')\n",
334
+ "tokenizer.save_pretrained('./')"
335
+ ]
336
+ },
337
+ {
338
+ "cell_type": "code",
339
+ "execution_count": 12,
340
+ "metadata": {},
341
+ "outputs": [],
342
+ "source": [
343
+ "tokenizer = T5Tokenizer.from_pretrained('./', lower = False)"
344
+ ]
345
+ },
346
+ {
347
+ "cell_type": "code",
348
+ "execution_count": 13,
349
+ "metadata": {},
350
+ "outputs": [],
351
+ "source": [
352
+ "config = T5Config.from_pretrained('./')"
353
+ ]
354
+ },
355
+ {
356
+ "cell_type": "code",
357
+ "execution_count": 14,
358
+ "metadata": {},
359
+ "outputs": [],
360
+ "source": [
361
+ "model = T5Model.from_pretrained('./pytorch_model.bin', config = config)"
362
+ ]
363
+ },
364
+ {
365
+ "cell_type": "code",
366
+ "execution_count": 15,
367
+ "metadata": {},
368
+ "outputs": [],
369
+ "source": [
370
+ "model.save_pretrained('./')"
371
+ ]
372
+ },
373
+ {
374
+ "cell_type": "code",
375
+ "execution_count": 16,
376
+ "metadata": {},
377
+ "outputs": [],
378
+ "source": [
379
+ "from transformers import T5Tokenizer, T5ForConditionalGeneration"
380
+ ]
381
+ },
382
+ {
383
+ "cell_type": "code",
384
+ "execution_count": 17,
385
+ "metadata": {},
386
+ "outputs": [],
387
+ "source": [
388
+ "model = T5ForConditionalGeneration.from_pretrained('./')"
389
+ ]
390
+ },
391
+ {
392
+ "cell_type": "code",
393
+ "execution_count": 20,
394
+ "metadata": {},
395
+ "outputs": [
396
+ {
397
+ "data": {
398
+ "text/plain": [
399
+ "'<pad> A.J. Morrow </i> <Tdikat</s>'"
400
+ ]
401
+ },
402
+ "execution_count": 20,
403
+ "metadata": {},
404
+ "output_type": "execute_result"
405
+ }
406
+ ],
407
+ "source": [
408
+ "input_ids = tokenizer.encode('soalan: siapakah perdana menteri malaysia?', return_tensors = 'pt')\n",
409
+ "outputs = model.generate(input_ids)\n",
410
+ "tokenizer.decode(outputs[0])"
411
+ ]
412
+ },
413
+ {
414
+ "cell_type": "code",
415
+ "execution_count": 21,
416
+ "metadata": {},
417
+ "outputs": [
418
+ {
419
+ "data": {
420
+ "text/plain": [
421
+ "'<pad> PETALING JAYA: Bekas perdana menteri Najib Razak mempersoalkan sama ada kerajaan tahu bagaimana menguruskan pandemik'"
422
+ ]
423
+ },
424
+ "execution_count": 21,
425
+ "metadata": {},
426
+ "output_type": "execute_result"
427
+ }
428
+ ],
429
+ "source": [
430
+ "input_ids = tokenizer.encode('terjemah Inggeris ke Melayu: PETALING JAYA: Former prime minister Najib Razak has questioned whether the government knows how to manage the Covid-19 pandemic, outlining several seemingly contradictory announcements it has made.', return_tensors = 'pt')\n",
431
+ "outputs = model.generate(input_ids)\n",
432
+ "tokenizer.decode(outputs[0])"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": 22,
438
+ "metadata": {},
439
+ "outputs": [
440
+ {
441
+ "data": {
442
+ "text/plain": [
443
+ "'<pad> PETALING JAYA: The former Prime Minister, Datuk Seri Najib Tun Razak and Deputy Prime Minister,'"
444
+ ]
445
+ },
446
+ "execution_count": 22,
447
+ "metadata": {},
448
+ "output_type": "execute_result"
449
+ }
450
+ ],
451
+ "source": [
452
+ "input_ids = tokenizer.encode('terjemah Melayu ke Inggeris: PETALING JAYA: Pertemuan bekas Perdana Menteri, Datuk Seri Najib Tun Razak dan Timbalan Perdana Menteri, Datuk Seri Ismail Sabri Yaakob hari ini adalah bagi membincangkan isu berkaitan hala tuju dan dasar negara.', return_tensors = 'pt')\n",
453
+ "outputs = model.generate(input_ids)\n",
454
+ "tokenizer.decode(outputs[0])"
455
+ ]
456
+ },
457
+ {
458
+ "cell_type": "code",
459
+ "execution_count": 23,
460
+ "metadata": {},
461
+ "outputs": [
462
+ {
463
+ "data": {
464
+ "text/plain": [
465
+ "'<pad> Roman Catholic Archdiocese of Maracaibo shares border with Roman Catholic Diocese'"
466
+ ]
467
+ },
468
+ "execution_count": 23,
469
+ "metadata": {},
470
+ "output_type": "execute_result"
471
+ }
472
+ ],
473
+ "source": [
474
+ "input_ids = tokenizer.encode('grafik pengetahuan: Keuskupan Agung Katolik Rom Maracaibo terletak di barat daya Keuskupan Katolik Rom Machiques.', return_tensors = 'pt')\n",
475
+ "outputs = model.generate(input_ids)\n",
476
+ "tokenizer.decode(outputs[0])"
477
+ ]
478
+ },
479
+ {
480
+ "cell_type": "code",
481
+ "execution_count": 24,
482
+ "metadata": {},
483
+ "outputs": [],
484
+ "source": [
485
+ "!rm -rf t5-super-tiny-v2"
486
+ ]
487
+ }
488
+ ],
489
+ "metadata": {
490
+ "kernelspec": {
491
+ "display_name": "Python 3",
492
+ "language": "python",
493
+ "name": "python3"
494
+ },
495
+ "language_info": {
496
+ "codemirror_mode": {
497
+ "name": "ipython",
498
+ "version": 3
499
+ },
500
+ "file_extension": ".py",
501
+ "mimetype": "text/x-python",
502
+ "name": "python",
503
+ "nbconvert_exporter": "python",
504
+ "pygments_lexer": "ipython3",
505
+ "version": "3.7.7"
506
+ }
507
+ },
508
+ "nbformat": 4,
509
+ "nbformat_minor": 4
510
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:800a40ff2b147f1481c3c14f9277a8b07dc913f84a3b5bf4facd76a511ca04cd
3
+ size 50760645
sp10m.cased.ms-en.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26de51154cccc9db6e65e5d466bdb0b1fff9fab1d80f4689711de943448addd6
3
+ size 803030
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"]}
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:26de51154cccc9db6e65e5d466bdb0b1fff9fab1d80f4689711de943448addd6
3
+ size 803030
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "extra_ids": 100, "additional_special_tokens": ["<extra_id_0>", "<extra_id_1>", "<extra_id_2>", "<extra_id_3>", "<extra_id_4>", "<extra_id_5>", "<extra_id_6>", "<extra_id_7>", "<extra_id_8>", "<extra_id_9>", "<extra_id_10>", "<extra_id_11>", "<extra_id_12>", "<extra_id_13>", "<extra_id_14>", "<extra_id_15>", "<extra_id_16>", "<extra_id_17>", "<extra_id_18>", "<extra_id_19>", "<extra_id_20>", "<extra_id_21>", "<extra_id_22>", "<extra_id_23>", "<extra_id_24>", "<extra_id_25>", "<extra_id_26>", "<extra_id_27>", "<extra_id_28>", "<extra_id_29>", "<extra_id_30>", "<extra_id_31>", "<extra_id_32>", "<extra_id_33>", "<extra_id_34>", "<extra_id_35>", "<extra_id_36>", "<extra_id_37>", "<extra_id_38>", "<extra_id_39>", "<extra_id_40>", "<extra_id_41>", "<extra_id_42>", "<extra_id_43>", "<extra_id_44>", "<extra_id_45>", "<extra_id_46>", "<extra_id_47>", "<extra_id_48>", "<extra_id_49>", "<extra_id_50>", "<extra_id_51>", "<extra_id_52>", "<extra_id_53>", "<extra_id_54>", "<extra_id_55>", "<extra_id_56>", "<extra_id_57>", "<extra_id_58>", "<extra_id_59>", "<extra_id_60>", "<extra_id_61>", "<extra_id_62>", "<extra_id_63>", "<extra_id_64>", "<extra_id_65>", "<extra_id_66>", "<extra_id_67>", "<extra_id_68>", "<extra_id_69>", "<extra_id_70>", "<extra_id_71>", "<extra_id_72>", "<extra_id_73>", "<extra_id_74>", "<extra_id_75>", "<extra_id_76>", "<extra_id_77>", "<extra_id_78>", "<extra_id_79>", "<extra_id_80>", "<extra_id_81>", "<extra_id_82>", "<extra_id_83>", "<extra_id_84>", "<extra_id_85>", "<extra_id_86>", "<extra_id_87>", "<extra_id_88>", "<extra_id_89>", "<extra_id_90>", "<extra_id_91>", "<extra_id_92>", "<extra_id_93>", "<extra_id_94>", "<extra_id_95>", "<extra_id_96>", "<extra_id_97>", "<extra_id_98>", "<extra_id_99>"], "sp_model_kwargs": {}, "tokenizer_class": "T5Tokenizer"}