Files changed (1) hide show
  1. README.md +5 -40
README.md CHANGED
@@ -1,35 +1,14 @@
1
  ---
2
  pipeline_tag: object-detection
 
 
 
3
  ---
4
- # YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
5
-
6
- This is the model repository for YOLOv9, containing the following checkpoints:
7
-
8
- - GELAN-C (a newer, lighter architecture)
9
- - GELAN-E
10
- - YOLO9-C
11
- - YOLO9-E
12
-
13
- ### How to Use
14
-
15
- Clone YOLOv9 repository.
16
-
17
- ```
18
  git clone https://github.com/WongKinYiu/yolov9.git
19
  cd yolov9
20
- ```
21
-
22
- Download the weights using `hf_hub_download` and use the loading function in helpers of YOLOv9.
23
-
24
- ```python
25
  from huggingface_hub import hf_hub_download
26
  hf_hub_download("merve/yolov9", filename="yolov9-c.pt", local_dir="./")
27
- ```
28
-
29
- Load the model.
30
-
31
- ```python
32
- # make sure you have the following dependencies
33
  import torch
34
  import numpy as np
35
  from models.common import DetectMultiBackend
@@ -59,18 +38,4 @@ def predict(image_path, weights='yolov9-c.pt', imgsz=640, conf_thres=0.1, iou_th
59
  pred = model(img, augment=False, visualize=False)
60
 
61
  # Apply NMS
62
- pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000)
63
- ```
64
-
65
- ### Citation
66
-
67
- ```
68
- @article{wang2024yolov9,
69
- title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
70
- author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
71
- booktitle={arXiv preprint arXiv:2402.13616},
72
- year={2024}
73
- }
74
- ```
75
-
76
- The Colab notebook can be found [here](https://colab.research.google.com/drive/1U3rbOmAZOwPUekcvpQS4GGVJQYR7VaQX?usp=sharing#scrollTo=k-JxtpQ_2e0F). 🧡
 
1
  ---
2
  pipeline_tag: object-detection
3
+ license: apache-2.0
4
+ metrics:
5
+ - accuracy
6
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  git clone https://github.com/WongKinYiu/yolov9.git
8
  cd yolov9
 
 
 
 
 
9
  from huggingface_hub import hf_hub_download
10
  hf_hub_download("merve/yolov9", filename="yolov9-c.pt", local_dir="./")
11
+ # Make sure you have the necessary dependencies installed
 
 
 
 
 
12
  import torch
13
  import numpy as np
14
  from models.common import DetectMultiBackend
 
38
  pred = model(img, augment=False, visualize=False)
39
 
40
  # Apply NMS
41
+ pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000)