Whisper Medium hindi -megha sharma

This model is a fine-tuned version of openai/whisper-medium on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3120
  • Wer: 18.1765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2166 0.8475 250 0.2327 26.1128
0.1217 1.6949 500 0.1955 21.5053
0.0578 2.5424 750 0.2025 20.7536
0.0271 3.3898 1000 0.2230 20.5096
0.0134 4.2373 1250 0.2463 20.3046
0.0105 5.0847 1500 0.2463 19.7970
0.0064 5.9322 1750 0.2636 19.2796
0.0048 6.7797 2000 0.2678 19.5920
0.0034 7.6271 2250 0.2765 19.2991
0.0021 8.4746 2500 0.2710 18.5084
0.0006 9.3220 2750 0.2879 19.2015
0.0001 10.1695 3000 0.2895 18.4303
0.0003 11.0169 3250 0.2930 18.3815
0.0005 11.8644 3500 0.3032 18.5963
0.0001 12.7119 3750 0.3003 18.4889
0.0001 13.5593 4000 0.3054 18.4010
0.0001 14.4068 4250 0.3085 18.2058
0.0 15.2542 4500 0.3104 18.1472
0.0 16.1017 4750 0.3116 18.1863
0.0 16.9492 5000 0.3120 18.1765

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
764M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for meg51/whisper-medium-hindi

Finetuned
(549)
this model

Dataset used to train meg51/whisper-medium-hindi

Evaluation results