Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

Whisper Large-v3 Hindi -megha sharma

This model is a fine-tuned version of openai/whisper-large-v3 on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1607
  • Wer: 18.4303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2000
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1781 6.7797 2000 0.1785 21.1734
0.1519 13.5593 4000 0.1621 19.2405
0.1286 20.3390 6000 0.1577 18.7427
0.1259 27.1186 8000 0.1564 18.2058
0.111 33.8983 10000 0.1568 17.9032
0.1067 40.6780 12000 0.1582 17.8153
0.1034 47.4576 14000 0.1591 18.8403
0.0995 54.2373 16000 0.1603 18.8598
0.0929 61.0169 18000 0.1607 18.4303

Framework versions

  • PEFT 0.12.1.dev0
  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for meg51/whisper-large-v3-hindi

Adapter
(80)
this model

Dataset used to train meg51/whisper-large-v3-hindi

Evaluation results