GermanDare-7B

GermanDare-7B is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: mistralai/Mistral-7B-v0.1
    # No parameters necessary for base model
  - model: DiscoResearch/DiscoLM_German_7b_v1
    parameters:
      density: 0.6
      weight: 0.2
  - model: DRXD1000/Phoenix
    parameters:
      density: 0.6
      weight: 0.2
  - model: LeoLM/leo-mistral-hessianai-7b-chat
    parameters:
      density: 0.6
      weight: 0.1
  - model: openaccess-ai-collective/DPOpenHermes-7B-v2
    parameters:
      density: 0.6
      weight: 0.2
  - model: fblgit/una-cybertron-7b-v2-bf16
    parameters:
      density: 0.6
      weight: 0.2
  - model: mlabonne/NeuralHermes-2.5-Mistral-7B
    parameters:
      density: 0.6
      weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayflowergmbh/GermanDare-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
14
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mayflowergmbh/GermanDare-7B

Collection including mayflowergmbh/GermanDare-7B