ramonda-monarch-7b

ramonda-monarch-7b is a merge of the following models using LazyMergekit:

πŸ† Benchmarks

Open LLM Leaderboard

Model Average ARC_easy HellaSwag MMLU TruthfulQA-mc2 Winogrande GSM8K ARC_challenge
mayacinka/ramonda-monarch-7b 76.66 86.91 87.45 61.97 77.4 81.61 73.01 68.26

MMLU

Groups Version Filter n-shot Metric Value Stderr
mmlu N/A none 0 acc 0.6197 Β± 0.0039
- humanities N/A none None acc 0.5762 Β± 0.0067
- other N/A none None acc 0.6936 Β± 0.0080
- social_sciences N/A none None acc 0.7192 Β± 0.0079
- stem N/A none None acc 0.5147 Β± 0.0085

Nous benchmark

autoEval

Model AGIEval GPT4All TruthfulQA Bigbench Average
mayacinka/ramonda-monarch-7b 44.63 77.41 77.41 49.59 62.26

🧩 Configuration

models:
  - model: bardsai/jaskier-7b-dpo-v5.6
    # No parameters necessary for base model
  - model: eren23/ogno-monarch-jaskier-merge-7b
    parameters:
      density: 0.53
      weight: 0.4
  - model: liminerity/Omningotex-7b-slerp
    parameters:
      density: 0.53
      weight: 0.3
  - model: yleo/OgnoMonarch-7B
    parameters:
      density: 0.53
      weight: 0.3
merge_method: dare_ties
base_model: bardsai/jaskier-7b-dpo-v5.6
parameters:
  int8_mask: true
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/ramonda-monarch-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
14
Safetensors
Model size
7.24B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mayacinka/ramonda-monarch-7b

Finetuned
(2)
this model
Quantizations
1 model

Collection including mayacinka/ramonda-monarch-7b