metadata
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- paulml/OGNO-7B
- bardsai/jaskier-7b-dpo-v4.3
base_model:
- paulml/OGNO-7B
- bardsai/jaskier-7b-dpo-v4.3
model-index:
- name: Buttercup-7b-dpo-ties
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.7
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.09
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.5
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.17
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.77
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.92
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/Buttercup-7b-dpo-ties
name: Open LLM Leaderboard
ramonda-7b-dpo-ties
ramonda-7b-dpo-ties is a merge of the following models using LazyMergekit:
Benchmark
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
mayacinka/ramonda-7b-dpo-ties | 76.19 | 72.7 | 89.69 | 64.5 | 77.17 | 84.77 | 68.92 |
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
ramonda-7b-dpo-ties | 44.67 | 77.16 | 77.6 | 49.06 | 62.12 |
🧩 Configuration
models:
- model: bardsai/jaskier-7b-dpo-v5.6
# no parameters necessary for base model
- model: paulml/OGNO-7B
parameters:
density: 0.9
weight: 0.5
- model: bardsai/jaskier-7b-dpo-v4.3
parameters:
density: 0.5
weight: 0.3
merge_method: ties
base_model: bardsai/jaskier-7b-dpo-v5.6
parameters:
normalize: true
dtype: float16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayacinka/ramonda-7b-dpo-ties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.19 |
AI2 Reasoning Challenge (25-Shot) | 72.70 |
HellaSwag (10-Shot) | 89.09 |
MMLU (5-Shot) | 64.50 |
TruthfulQA (0-shot) | 77.17 |
Winogrande (5-shot) | 84.77 |
GSM8k (5-shot) | 68.92 |