nmbp-bert-headlines / README.md
maximuspowers's picture
Update README.md
233b549 verified
---
library_name: transformers
datasets:
- vector-institute/newsmediabias-plus
language:
- en
metrics:
- accuracy
- precision
- recall
- f1
base_model:
- google-bert/bert-base-uncased
pipeline_tag: text-classification
---
# BERT NMB+ (Disinformation Sequence Classification):
Classifies sentences as "Likely" or "Unlikely" biased/disinformation (max token len 128).
Fine-tuned BERT ([bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased)) on the `headline` and `text_label` fields in the [News Media Bias Plus Dataset](https://huggingface.co/datasets/vector-institute/newsmediabias-plus).
**This model was trained without weighted sampling, and the dataset contains 81.9% 'Likely' and 18.1% 'Unlikely' examples.** The same model trained with weighted sampling preformed better when evaluated by gpt-4o-mini as a judge and is available [here](https://huggingface.co/maximuspowers/nmbp-bert-headlines-balanced).
### Metics
*Evaluated on a 0.1 random sample of the NMB+ dataset, unseen during training*
- Accuracy: 0.7990
- Precision: 0.8096
- Recall: 0.9556
- F1 Score: 0.8766
## How to Use:
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="maximuspowers/nmbp-bert-headlines")
result = classifier("He was a terrible politician.", top_k=2)
```
### Example Response:
```json
[
{
'label': 'Likely',
'score': 0.9967995882034302
},
{
'label': 'Unlikely',
'score': 0.003200419945642352
}
]
```