biobert-v1.1-finetuned-medmcqa
This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9408
- Accuracy: {'accuracy': 0.6190476190476191}
- F1-score: {'f1': 0.6383219954648526}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score |
---|---|---|---|---|---|
No log | 1.0 | 229 | 1.1779 | {'accuracy': 0.5714285714285714} | {'f1': 0.5936070334566574} |
No log | 2.0 | 458 | 0.9840 | {'accuracy': 0.6666666666666666} | {'f1': 0.6800653594771241} |
1.1746 | 3.0 | 687 | 0.9408 | {'accuracy': 0.6190476190476191} | {'f1': 0.6383219954648526} |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Inference API (serverless) does not yet support transformers models for this pipeline type.
Model tree for maxg73872/biobert-v1.1-finetuned-medmcqa
Base model
dmis-lab/biobert-v1.1