matthieulel's picture
End of training
2b2e4a5 verified
metadata
license: apache-2.0
base_model: google/vit-large-patch16-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-large-patch16-224-finetuned-galaxy10-decals
    results: []

vit-large-patch16-224-finetuned-galaxy10-decals

This model is a fine-tuned version of google/vit-large-patch16-224 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6404
  • Accuracy: 0.8551
  • Precision: 0.8525
  • Recall: 0.8551
  • F1: 0.8526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.0358 0.99 31 0.7598 0.7362 0.7425 0.7362 0.7266
0.6822 1.98 62 0.6136 0.7920 0.7972 0.7920 0.7899
0.6535 2.98 93 0.5416 0.8106 0.8140 0.8106 0.8062
0.5696 4.0 125 0.5305 0.8162 0.8195 0.8162 0.8140
0.5435 4.99 156 0.5555 0.8145 0.8242 0.8145 0.8161
0.4621 5.98 187 0.5075 0.8298 0.8344 0.8298 0.8254
0.4479 6.98 218 0.5118 0.8281 0.8291 0.8281 0.8269
0.4318 8.0 250 0.5164 0.8196 0.8255 0.8196 0.8166
0.4011 8.99 281 0.5087 0.8410 0.8369 0.8410 0.8362
0.355 9.98 312 0.5063 0.8410 0.8433 0.8410 0.8405
0.3655 10.98 343 0.5419 0.8326 0.8343 0.8326 0.8305
0.3292 12.0 375 0.5134 0.8439 0.8442 0.8439 0.8415
0.3207 12.99 406 0.6285 0.8185 0.8293 0.8185 0.8178
0.2931 13.98 437 0.5627 0.8382 0.8395 0.8382 0.8371
0.2817 14.98 468 0.6059 0.8207 0.8278 0.8207 0.8215
0.2713 16.0 500 0.6140 0.8382 0.8367 0.8382 0.8337
0.233 16.99 531 0.5992 0.8382 0.8384 0.8382 0.8374
0.2313 17.98 562 0.6679 0.8292 0.8343 0.8292 0.8278
0.223 18.98 593 0.6501 0.8343 0.8386 0.8343 0.8347
0.2126 20.0 625 0.6731 0.8343 0.8304 0.8343 0.8296
0.2078 20.99 656 0.6335 0.8388 0.8410 0.8388 0.8383
0.201 21.98 687 0.6120 0.8506 0.8478 0.8506 0.8485
0.2045 22.98 718 0.6590 0.8410 0.8389 0.8410 0.8371
0.1759 24.0 750 0.6478 0.8489 0.8464 0.8489 0.8457
0.1856 24.99 781 0.6604 0.8444 0.8413 0.8444 0.8420
0.1766 25.98 812 0.6922 0.8501 0.8491 0.8501 0.8484
0.1841 26.98 843 0.6485 0.8501 0.8493 0.8501 0.8486
0.1707 28.0 875 0.6393 0.8467 0.8440 0.8467 0.8446
0.1792 28.99 906 0.6404 0.8551 0.8525 0.8551 0.8526
0.1713 29.76 930 0.6398 0.8534 0.8513 0.8534 0.8511

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1