distilbert-mrpc / README.md
librarian-bot's picture
Librarian Bot: Update Hugging Face dataset ID
a67c859 verified
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - nyu-mll/glue
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-mrpc
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: glue
          type: glue
          args: mrpc
        metrics:
          - type: accuracy
            value: 0.8480392156862745
            name: Accuracy
          - type: f1
            value: 0.8934707903780068
            name: F1

distilbert-mrpc

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6783
  • Accuracy: 0.8480
  • F1: 0.8935

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.5916 0.22 100 0.5676 0.7157 0.8034
0.5229 0.44 200 0.4534 0.7770 0.8212
0.5055 0.65 300 0.4037 0.8137 0.8762
0.4597 0.87 400 0.3706 0.8407 0.8893
0.4 1.09 500 0.4590 0.8113 0.8566
0.3498 1.31 600 0.4196 0.8554 0.8974
0.2916 1.53 700 0.4606 0.8554 0.8933
0.3309 1.74 800 0.5162 0.8578 0.9027
0.3788 1.96 900 0.3911 0.8529 0.8980
0.2059 2.18 1000 0.5842 0.8554 0.8995
0.1595 2.4 1100 0.5701 0.8578 0.8975
0.1205 2.61 1200 0.6905 0.8407 0.8889
0.174 2.83 1300 0.6783 0.8480 0.8935

Framework versions

  • Transformers 4.15.0
  • Pytorch 1.10.1
  • Datasets 1.17.0
  • Tokenizers 0.10.3