|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: distilbert-mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: glue |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8480392156862745 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8934707903780068 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-mrpc |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6783 |
|
- Accuracy: 0.8480 |
|
- F1: 0.8935 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.5916 | 0.22 | 100 | 0.5676 | 0.7157 | 0.8034 | |
|
| 0.5229 | 0.44 | 200 | 0.4534 | 0.7770 | 0.8212 | |
|
| 0.5055 | 0.65 | 300 | 0.4037 | 0.8137 | 0.8762 | |
|
| 0.4597 | 0.87 | 400 | 0.3706 | 0.8407 | 0.8893 | |
|
| 0.4 | 1.09 | 500 | 0.4590 | 0.8113 | 0.8566 | |
|
| 0.3498 | 1.31 | 600 | 0.4196 | 0.8554 | 0.8974 | |
|
| 0.2916 | 1.53 | 700 | 0.4606 | 0.8554 | 0.8933 | |
|
| 0.3309 | 1.74 | 800 | 0.5162 | 0.8578 | 0.9027 | |
|
| 0.3788 | 1.96 | 900 | 0.3911 | 0.8529 | 0.8980 | |
|
| 0.2059 | 2.18 | 1000 | 0.5842 | 0.8554 | 0.8995 | |
|
| 0.1595 | 2.4 | 1100 | 0.5701 | 0.8578 | 0.8975 | |
|
| 0.1205 | 2.61 | 1200 | 0.6905 | 0.8407 | 0.8889 | |
|
| 0.174 | 2.83 | 1300 | 0.6783 | 0.8480 | 0.8935 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.15.0 |
|
- Pytorch 1.10.1 |
|
- Datasets 1.17.0 |
|
- Tokenizers 0.10.3 |
|
|