Translation
jwang214's picture
Update README.md
6f41e5e verified
metadata
pipeline_tag: translation
language:
  - multilingual
  - en
  - am
  - ar
  - so
  - sw
  - pt
  - af
  - fr
  - zu
  - mg
  - ha
  - sn
  - arz
  - ny
  - ig
  - xh
  - yo
  - st
  - rw
  - tn
  - ti
  - ts
  - om
  - run
  - nso
  - ee
  - ln
  - tw
  - pcm
  - gaa
  - loz
  - lg
  - guw
  - bem
  - efi
  - lue
  - lua
  - toi
  - ve
  - tum
  - tll
  - iso
  - kqn
  - zne
  - umb
  - mos
  - tiv
  - lu
  - ff
  - kwy
  - bci
  - rnd
  - luo
  - wal
  - ss
  - lun
  - wo
  - nyk
  - kj
  - ki
  - fon
  - bm
  - cjk
  - din
  - dyu
  - kab
  - kam
  - kbp
  - kr
  - kmb
  - kg
  - nus
  - sg
  - taq
  - tzm
  - nqo
license: apache-2.0

This is an improved version of AfriCOMET-QE-STL (quality estimation single task) evaluation model: It receives a source sentence, and a translation, and returns a score that reflects the quality of the translation compared to the source. Different from the original AfriCOMET-QE-STL, this QE model is based on an improved African enhanced encoder, afro-xlmr-large-76L, which leads better performance on quality estimation of African-related machine translation, verified in WMT 2024 Metrics Shared Task.

Paper

AfriMTE and AfriCOMET: Empowering COMET to Embrace Under-resourced African Languages (Wang et al., arXiv 2023)

License

Apache-2.0

Usage (AfriCOMET-QE)

Using this model requires unbabel-comet to be installed:

pip install --upgrade pip  # ensures that pip is current 
pip install unbabel-comet

Then you can use it through comet CLI:

comet-score -s {source-inputs}.txt -t {translation-outputs}.txt --model masakhane/africomet-qe-stl

Or using Python:

from comet import download_model, load_from_checkpoint

model_path = download_model("masakhane/africomet-qe-stl-1.1")
model = load_from_checkpoint(model_path)
data = [
    {
        "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
        "mt": "Nadal's head to head record against the Canadian is 7–2.",
    },
    {
        "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
        "mt": "He recently lost against Raonic in the Brisbane Open.",
    }
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)

Intended uses

Our model is intented to be used for MT quality estimation.

Given a source sentence and a translation, the model outputs a single quality score between 0 and 1 where 1 represents a perfect translation.

Languages Covered:

There are 76 languages available :

  • English (eng)
  • Amharic (amh)
  • Arabic (ara)
  • Somali (som)
  • Kiswahili (swa)
  • Portuguese (por)
  • Afrikaans (afr)
  • French (fra)
  • isiZulu (zul)
  • Malagasy (mlg)
  • Hausa (hau)
  • chiShona (sna)
  • Egyptian Arabic (arz)
  • Chichewa (nya)
  • Igbo (ibo)
  • isiXhosa (xho)
  • Yorùbá (yor)
  • Sesotho (sot)
  • Kinyarwanda (kin)
  • Tigrinya (tir)
  • Tsonga (tso)
  • Oromo (orm)
  • Rundi (run)
  • Northern Sotho (nso)
  • Ewe (ewe)
  • Lingala (lin)
  • Twi (twi)
  • Nigerian Pidgin (pcm)
  • Ga (gaa)
  • Lozi (loz)
  • Luganda (lug)
  • Gun (guw)
  • Bemba (bem)
  • Efik (efi)
  • Luvale (lue)
  • Luba-Lulua (lua)
  • Tonga (toi)
  • Tshivenḓa (ven)
  • Tumbuka (tum)
  • Tetela (tll)
  • Isoko (iso)
  • Kaonde (kqn)
  • Zande (zne)
  • Umbundu (umb)
  • Mossi (mos)
  • Tiv (tiv)
  • Luba-Katanga (lub)
  • Fula (fuv)
  • San Salvador Kongo (kwy)
  • Baoulé (bci)
  • Ruund (rnd)
  • Luo (luo)
  • Wolaitta (wal)
  • Swazi (ssw)
  • Lunda (lun)
  • Wolof (wol)
  • Nyaneka (nyk)
  • Kwanyama (kua)
  • Kikuyu (kik)
  • Fon (fon)
  • Bambara (bam)
  • Chokwe (cjk)
  • Dinka (dik)
  • Dyula (dyu)
  • Kabyle (kab)
  • Kamba (kam)
  • Kabiyè (kbp)
  • Kanuri (knc)
  • Kimbundu (kmb)
  • Kikongo (kon)
  • Nuer (nus)
  • Sango (sag)
  • Tamasheq (taq)
  • Tamazight (tzm)
  • N'ko (nqo)