bert-base-uncased-issues-128

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss
0.2394 1.0 291 0.2312
0.1858 2.0 582 0.1863
0.1687 3.0 873 0.1948
0.1602 4.0 1164 0.1948
0.1537 5.0 1455 0.1678
0.1467 6.0 1746 0.1805
0.1406 7.0 2037 0.1641
0.1382 8.0 2328 0.1770
0.1354 9.0 2619 0.1724
0.1312 10.0 2910 0.1679
0.1284 11.0 3201 0.1709
0.1262 12.0 3492 0.1549
0.1252 13.0 3783 0.1559
0.1239 14.0 4074 0.1441
0.1217 15.0 4365 0.1673
0.1225 16.0 4656 0.1598

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for martinwunderlich/bert-base-uncased-issues-128

Finetuned
(2399)
this model