- Download the repo
import os
import torch
from glob import glob
from transformers import AutoModelForSeq2SeqLM, AutoConfig
model_name = 'marsggbo/t5-small_dff2048_dmodel32_token-pattern-predictor_mixtral8x7bInstructv0.1_wmt16'
# ignore the mismatched size, because lm_head was modified
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name, ignore_mismatched_sizes=True, use_safetensors=False
)
- Build the model
home_path = os.path.expanduser('~')
num_classes = 32*8 # 32 layers, each with 8 experts
ckpt_path = f"{home_path}/.cache/huggingface/hub/*{model_name.split('/')[-1]}/snapshots/*/*bin"
ckpt_path = glob(ckpt_path)[0]
model_config = AutoConfig.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_config(config=model_config)
model.lm_head = torch.nn.Linear(model.config.hidden_size, num_classes, bias=False)
model.load_state_dict(torch.load(ckpt_path, map_location='cpu'), strict=True)
- Downloads last month
- 2
Model tree for marsggbo/t5-small_dff2048_dmodel32_token-pattern-predictor_mixtral8x7bInstructv0.1_wmt16
Base model
google-t5/t5-small