Sinai Voice Arabic Speech Recognition Model

نموذج صوت سيناء للتعرف على الأصوات العربية الفصحى و تحويلها إلى نصوص

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - AR dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2141
  • Wer: 0.1808

It achieves the following results on the evaluation set:

  • eval_loss = 0.2141
  • eval_samples = 10388
  • eval_wer = 0.181
  • eval_cer = 0.049

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id bakrianoo/sinai-voice-ar-stt --dataset mozilla-foundation/common_voice_8_0 --config ar --split test

Inference Without LM

from transformers import (Wav2Vec2Processor, Wav2Vec2ForCTC)
import torchaudio
import torch

def speech_file_to_array_fn(voice_path, resampling_to=16000):
    speech_array, sampling_rate = torchaudio.load(voice_path)
    resampler = torchaudio.transforms.Resample(sampling_rate, resampling_to)
    
    return resampler(speech_array)[0].numpy(), sampling_rate

# load the model
cp = "bakrianoo/sinai-voice-ar-stt"
processor = Wav2Vec2Processor.from_pretrained(cp)
model = Wav2Vec2ForCTC.from_pretrained(cp)

# recognize the text in a sample sound file
sound_path = './my_voice.mp3'

sample, sr = speech_file_to_array_fn(sound_path)
inputs = processor([sample], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values,).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 10
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 80
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.354 0.64 1000 0.4109 0.4493
0.5886 1.28 2000 0.2798 0.3099
0.4977 1.92 3000 0.2387 0.2673
0.4253 2.56 4000 0.2266 0.2523
0.3942 3.2 5000 0.2171 0.2437
0.3619 3.84 6000 0.2076 0.2253
0.3245 4.48 7000 0.2088 0.2186
0.308 5.12 8000 0.2086 0.2206
0.2881 5.76 9000 0.2089 0.2105
0.2557 6.4 10000 0.2015 0.2004
0.248 7.04 11000 0.2044 0.1953
0.2251 7.68 12000 0.2058 0.1932
0.2052 8.32 13000 0.2117 0.1878
0.1976 8.96 14000 0.2104 0.1825
0.1845 9.6 15000 0.2156 0.1821

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.2+cu113
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
1
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train marid/sst2

Evaluation results