Mann-E FLUX[Dev] Edition
How to use the model
Install needed libraries
pip install git+https://github.com/huggingface/diffusers.git transformers==4.42.4 accelerate xformers peft sentencepiece protobuf -q
Execution code
import numpy as np
import random
import torch
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("mann-e/mann-e_flux", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
prompt = "an astronaut riding a horse"
pipe(
prompt=f"{prompt}",
guidance_scale=3.5,
num_inference_steps=10,
width=720,
height=1280,
generator=generator,
output_type="pil"
).images[0].save("output.png")
Tips and Tricks
- Adding
mj-v6.1-style
to the prompts specially the cinematic and photo realistic prompts can make the result quality high as hell! Give it a try. - The best
guidance_scale
is somewhere between 3.5 and 5.0 - Inference steps between 8 and 16 are working very well.
- Downloads last month
- 1,079
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.