File size: 2,165 Bytes
3e34a24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
metrics:
- accuracy
base_model: distilbert-base-uncased
model-index:
- name: distilbert-base-uncased-lora-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8460
- Accuracy: {'accuracy': 0.897}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|
| No log | 1.0 | 250 | 0.3866 | {'accuracy': 0.88} |
| 0.4059 | 2.0 | 500 | 0.4802 | {'accuracy': 0.882} |
| 0.4059 | 3.0 | 750 | 0.5185 | {'accuracy': 0.883} |
| 0.2343 | 4.0 | 1000 | 0.5356 | {'accuracy': 0.884} |
| 0.2343 | 5.0 | 1250 | 0.6939 | {'accuracy': 0.891} |
| 0.0849 | 6.0 | 1500 | 0.8226 | {'accuracy': 0.882} |
| 0.0849 | 7.0 | 1750 | 0.7980 | {'accuracy': 0.887} |
| 0.0183 | 8.0 | 2000 | 0.8676 | {'accuracy': 0.889} |
| 0.0183 | 9.0 | 2250 | 0.8728 | {'accuracy': 0.897} |
| 0.016 | 10.0 | 2500 | 0.8460 | {'accuracy': 0.897} |
### Framework versions
- PEFT 0.7.1
- Transformers 4.37.1
- Pytorch 2.1.2
- Datasets 2.16.1
- Tokenizers 0.15.1 |