distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8460
  • Accuracy: {'accuracy': 0.897}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3866 {'accuracy': 0.88}
0.4059 2.0 500 0.4802 {'accuracy': 0.882}
0.4059 3.0 750 0.5185 {'accuracy': 0.883}
0.2343 4.0 1000 0.5356 {'accuracy': 0.884}
0.2343 5.0 1250 0.6939 {'accuracy': 0.891}
0.0849 6.0 1500 0.8226 {'accuracy': 0.882}
0.0849 7.0 1750 0.7980 {'accuracy': 0.887}
0.0183 8.0 2000 0.8676 {'accuracy': 0.889}
0.0183 9.0 2250 0.8728 {'accuracy': 0.897}
0.016 10.0 2500 0.8460 {'accuracy': 0.897}

Framework versions

  • PEFT 0.7.1
  • Transformers 4.37.1
  • Pytorch 2.1.2
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mango278/distilbert-base-uncased-lora-text-classification

Adapter
(221)
this model