See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 950bcce6cc9a1d4d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/950bcce6cc9a1d4d_train_data.json
type:
field_instruction: darija
field_output: eng
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/6e88ab70-6a8d-4b8c-b0b3-77184d17a20d
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 5
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/950bcce6cc9a1d4d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 2.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: d4e86d7e-2b2e-45b9-bf98-c0da59e845ed
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d4e86d7e-2b2e-45b9-bf98-c0da59e845ed
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
6e88ab70-6a8d-4b8c-b0b3-77184d17a20d
This model is a fine-tuned version of NousResearch/Meta-Llama-3-8B-Alternate-Tokenizer on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00015
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=2e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0008 | 1 | 8.7248 |
8.547 | 0.0071 | 9 | 6.6192 |
5.2814 | 0.0141 | 18 | 4.4651 |
4.2927 | 0.0212 | 27 | 4.0005 |
3.8531 | 0.0283 | 36 | 3.8258 |
3.6351 | 0.0353 | 45 | 3.6262 |
3.6745 | 0.0424 | 54 | 3.5406 |
3.2906 | 0.0495 | 63 | 3.4501 |
3.4344 | 0.0565 | 72 | 3.3794 |
3.4602 | 0.0636 | 81 | 3.3322 |
3.0172 | 0.0707 | 90 | 3.3157 |
3.4561 | 0.0778 | 99 | 3.3061 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.