CommitPredictorT5

This model is a fine-tuned version of Salesforce/codet5-base-multi-sum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4669
  • Bleu: 0.0002
  • Precisions: [0.003189792663476874, 0.00016826518593303046, 0.000321853878339234, 0.0036900369003690036]
  • Brevity Penalty: 0.2394
  • Length Ratio: 0.4116
  • Translation Length: 10658
  • Reference Length: 25896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 42
  • eval_batch_size: 42
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 126
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Bleu Precisions Brevity Penalty Length Ratio Translation Length Reference Length
No log 1.0 299 2.8109 0.0002 [0.003640040444893832, 0.00019327406262079628, 0.0003745318352059925, 0.006024096385542169] 0.1982 0.3819 9889 25896
3.1102 2.0 598 2.6662 0.0002 [0.004371150407311742, 0.00018691588785046728, 0.00036114120621162876, 0.005319148936170213] 0.2074 0.3887 10065 25896
3.1102 3.0 897 2.5869 0.0002 [0.0033418517790446234, 0.00018321729571271528, 0.0003546099290780142, 0.005494505494505495] 0.2132 0.3928 10173 25896
2.6696 4.0 1196 2.5371 0.0002 [0.0033398821218074658, 0.00018301610541727673, 0.0003522367030644593, 0.004672897196261682] 0.2135 0.3931 10179 25896
2.6696 5.0 1495 2.5077 0.0002 [0.003243655790879603, 0.0001734304543877905, 0.0003356831151393085, 0.005208333333333333] 0.2298 0.4047 10481 25896
2.4738 6.0 1794 2.4810 0.0002 [0.0029016345874842827, 0.00017784101013693757, 0.00034234851078397807, 0.0045662100456621] 0.2220 0.3992 10338 25896
2.3139 7.0 2093 2.4625 0.0002 [0.002756130013305455, 0.0001722356183258698, 0.00033101621979476995, 0.00423728813559322] 0.2319 0.4063 10521 25896
2.3139 8.0 2392 2.4556 0.0002 [0.0027348170501697473, 0.00016983695652173913, 0.0003266906239790918, 0.004273504273504274] 0.2364 0.4094 10603 25896
2.1842 9.0 2691 2.4470 0.0002 [0.003198193961057285, 0.000169061707523246, 0.00032658393207054214, 0.004784688995215311] 0.2378 0.4105 10630 25896
2.1842 10.0 2990 2.4439 0.0002 [0.0033203680865193054, 0.00017167381974248928, 0.000328515111695138, 0.0038022813688212928] 0.2330 0.4070 10540 25896
2.0831 11.0 3289 2.4435 0.0002 [0.0032796101949025486, 0.000167897918065816, 0.000321853878339234, 0.003875968992248062] 0.2401 0.4121 10671 25896
1.9685 12.0 3588 2.4483 0.0002 [0.0037652056381540836, 0.0001772421127259837, 0.0003397893306150187, 0.004098360655737705] 0.2231 0.3999 10357 25896
1.9685 13.0 3887 2.4557 0.0002 [0.0033178500331785005, 0.00017143836790673754, 0.000327653997378768, 0.0036900369003690036] 0.2334 0.4073 10548 25896
1.8816 14.0 4186 2.4669 0.0002 [0.003189792663476874, 0.00016826518593303046, 0.000321853878339234, 0.0036900369003690036] 0.2394 0.4116 10658 25896

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.