File size: 3,109 Bytes
499a66e 7a6d5a0 499a66e 7a6d5a0 fd6b1e9 7a6d5a0 81a553d 7a6d5a0 81a553d cf4db73 7a6d5a0 81a553d cf4db73 81a553d 7a6d5a0 81a553d cf4db73 81a553d cf4db73 81a553d cf4db73 81a553d 8185317 81a553d cf4db73 81a553d cf4db73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
library_name: diffusers
---
# Stage-A-ft-HQ
`stage-a-ft-hq` is a version of [Würstchen](https://huggingface.co/warp-ai/wuerstchen)'s **Stage A** that was finetuned to have slightly-nicer-looking textures.
`stage-a-ft-hq` works with any Würstchen-derived model (including [Stable Cascade](https://huggingface.co/stabilityai/stable-cascade)).
## Example comparison
| Stable Cascade | Stable Cascade + `stage-a-ft-hq` |
| --------------------------------- | ---------------------------------- |
| ![](example_baseline.png) | ![](example_finetuned.png) |
| ![](example_baseline_closeup.png) | ![](example_finetuned_closeup.png) |
## Explanation
Image generators like Würstchen and Stable Cascade create images via a multi-stage process.
Stage A is the ultimate stage, responsible for rendering out full-resolution, human-interpretable images (based on the output from prior stages).
The original Stage A tends to render slightly-smoothed-out images with a distinctive noise pattern on top.
`stage-a-ft-hq` was finetuned briefly on a high-quality dataset in order to reduce these artifacts.
## Suggested Settings
To generate highly detailed images, you probably want to use `stage-a-ft-hq` (which improves very fine detail) in combination with a large Stage B step count (which [improves mid-level detail](https://old.reddit.com/r/StableDiffusion/comments/1ar359h/cascade_can_generate_directly_at_1536x1536_and/kqhjtk5/)).
## 🧨 Diffusers Usage
⚠️ As of 2024-02-17, Stable Cascade's [PR](https://github.com/huggingface/diffusers/pull/6487) is still under review.
I've only tested Stable Cascade with this particular version of the PR:
```bash
pip install --upgrade --force-reinstall https://github.com/kashif/diffusers/archive/a3dc21385b7386beb3dab3a9845962ede6765887.zip
```
```py
import torch
device = "cuda"
# Load the Stage-A-ft-HQ model
from diffusers.pipelines.wuerstchen import PaellaVQModel
stage_a_ft_hq = PaellaVQModel.from_pretrained("madebyollin/stage-a-ft-hq", torch_dtype=torch.float16).to(device)
# Load the normal Stable Cascade pipeline
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
num_images_per_prompt = 1
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
# Swap in the Stage-A-ft-HQ model
decoder.vqgan = stage_a_ft_hq
prompt = "Photograph of Seattle streets on a snowy winter morning"
negative_prompt = ""
prior_output = prior(
prompt=prompt,
height=1024,
width=1024,
negative_prompt=negative_prompt,
guidance_scale=4.0,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=20
)
decoder_output = decoder(
image_embeddings=prior_output.image_embeddings.half(),
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=0.0,
output_type="pil",
num_inference_steps=20
).images
display(decoder_output[0])
``` |