madebyollin
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -16,27 +16,42 @@ library_name: diffusers
|
|
16 |
| ![](example_baseline.png) | ![](example_finetuned.png) |
|
17 |
| ![](example_baseline_closeup.png) | ![](example_finetuned_closeup.png) |
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
## 🧨 Diffusers Usage
|
21 |
|
22 |
⚠️ As of 2024-02-17, Stable Cascade's [PR](https://github.com/huggingface/diffusers/pull/6487) is still under review.
|
23 |
-
I've only
|
|
|
24 |
```bash
|
25 |
pip install --upgrade --force-reinstall https://github.com/kashif/diffusers/archive/a3dc21385b7386beb3dab3a9845962ede6765887.zip
|
26 |
```
|
27 |
|
|
|
|
|
28 |
```py
|
29 |
import torch
|
|
|
30 |
|
31 |
# Load the Stage-A-ft-HQ model
|
32 |
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
33 |
-
stage_a_ft_hq = PaellaVQModel.from_pretrained("madebyollin/
|
34 |
|
35 |
# Load the normal Stable Cascade pipeline
|
36 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
37 |
|
38 |
-
|
39 |
-
num_images_per_prompt = 2
|
40 |
|
41 |
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
|
42 |
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
|
@@ -62,21 +77,8 @@ decoder_output = decoder(
|
|
62 |
negative_prompt=negative_prompt,
|
63 |
guidance_scale=0.0,
|
64 |
output_type="pil",
|
65 |
-
num_inference_steps=
|
66 |
).images
|
67 |
|
68 |
display(decoder_output[0])
|
69 |
-
```
|
70 |
-
|
71 |
-
## Explanation
|
72 |
-
|
73 |
-
Image generators like Würstchen and Stable Cascade create images via a multi-stage process.
|
74 |
-
Stage A is the ultimate stage, responsible for rendering out full-resolution, human-interpretable images (based on the output from prior stages).
|
75 |
-
|
76 |
-
The original Stage A tends to render slightly-smoothed-out images with a distinctive noise pattern on top.
|
77 |
-
|
78 |
-
`stage-a-ft-hq` was finetuned briefly on a high-quality dataset in order to reduce these artifacts.
|
79 |
-
|
80 |
-
## Suggested Settings
|
81 |
-
|
82 |
-
To generate highly detailed images, you probably want to use `stage-a-ft-hq` (which improves very fine detail) in combination with a large Stage B step count (which [improves mid-level detail](https://old.reddit.com/r/StableDiffusion/comments/1ar359h/cascade_can_generate_directly_at_1536x1536_and/kqhjtk5/)).
|
|
|
16 |
| ![](example_baseline.png) | ![](example_finetuned.png) |
|
17 |
| ![](example_baseline_closeup.png) | ![](example_finetuned_closeup.png) |
|
18 |
|
19 |
+
## Explanation
|
20 |
+
|
21 |
+
Image generators like Würstchen and Stable Cascade create images via a multi-stage process.
|
22 |
+
Stage A is the ultimate stage, responsible for rendering out full-resolution, human-interpretable images (based on the output from prior stages).
|
23 |
+
|
24 |
+
The original Stage A tends to render slightly-smoothed-out images with a distinctive noise pattern on top.
|
25 |
+
|
26 |
+
`stage-a-ft-hq` was finetuned briefly on a high-quality dataset in order to reduce these artifacts.
|
27 |
+
|
28 |
+
## Suggested Settings
|
29 |
+
|
30 |
+
To generate highly detailed images, you probably want to use `stage-a-ft-hq` (which improves very fine detail) in combination with a large Stage B step count (which [improves mid-level detail](https://old.reddit.com/r/StableDiffusion/comments/1ar359h/cascade_can_generate_directly_at_1536x1536_and/kqhjtk5/)).
|
31 |
|
32 |
## 🧨 Diffusers Usage
|
33 |
|
34 |
⚠️ As of 2024-02-17, Stable Cascade's [PR](https://github.com/huggingface/diffusers/pull/6487) is still under review.
|
35 |
+
I've only tested Stable Cascade with this particular version of the PR:
|
36 |
+
|
37 |
```bash
|
38 |
pip install --upgrade --force-reinstall https://github.com/kashif/diffusers/archive/a3dc21385b7386beb3dab3a9845962ede6765887.zip
|
39 |
```
|
40 |
|
41 |
+
TODO: verify this particular sample code works
|
42 |
+
|
43 |
```py
|
44 |
import torch
|
45 |
+
device = "cuda"
|
46 |
|
47 |
# Load the Stage-A-ft-HQ model
|
48 |
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
49 |
+
stage_a_ft_hq = PaellaVQModel.from_pretrained("madebyollin/stage-a-ft-hq", torch_dtype=torch.float16).to(device)
|
50 |
|
51 |
# Load the normal Stable Cascade pipeline
|
52 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
53 |
|
54 |
+
num_images_per_prompt = 1
|
|
|
55 |
|
56 |
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=torch.bfloat16).to(device)
|
57 |
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=torch.float16).to(device)
|
|
|
77 |
negative_prompt=negative_prompt,
|
78 |
guidance_scale=0.0,
|
79 |
output_type="pil",
|
80 |
+
num_inference_steps=20
|
81 |
).images
|
82 |
|
83 |
display(decoder_output[0])
|
84 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|