metadata
library_name: transformers
license: llama3.2
base_model: meta-llama/Llama-3.2-3B
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
results: []
See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Llama-3.2-3B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: "data/amendments_with_content_converted.json"
type: completion
- path: json
data_files: "data/federal_rules_converted.json"
type: completion
- path: json
data_files: "data/cornell_legal_encyclopedias_converted.json"
type: completion
- path: json
data_files: "data/pocket_guide_for_judges_converted.json"
type: completion
- path: json
data_files: "data/us_federal_code.json"
type: completion
- path: json
data_files: "data/us_supreme_court_summaries_converted.json"
type: completion
- path: json
data_files: "data/us_supreme_court_converted.json"
type: completion
- path: json
data_files: "data/ucfr.json"
type: completion
- path: json
data_files: "data/map-code-filtered.json"
type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
# adapter: lora
# lora_model_dir:
# lora_r: 128
# lora_alpha: 32
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:
# lora_modules_to_save:
# - embed_tokens
# - lm_head
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.0.mlp.down_proj
- model.layers.1.mlp.down_proj
- model.layers.17.mlp.down_proj
- model.layers.19.mlp.down_proj
- model.layers.18.mlp.down_proj
- model.layers.5.mlp.down_proj
- model.layers.20.mlp.down_proj
- model.layers.2.mlp.down_proj
- model.layers.4.mlp.down_proj
- model.layers.6.mlp.down_proj
- model.layers.3.mlp.down_proj
- model.layers.16.mlp.down_proj
- model.layers.15.mlp.down_proj
- model.layers.13.mlp.down_proj
# mlp.gate_proj layers
- model.layers.0.mlp.gate_proj
- model.layers.1.mlp.gate_proj
- model.layers.2.mlp.gate_proj
- model.layers.3.mlp.gate_proj
- model.layers.22.mlp.gate_proj
- model.layers.21.mlp.gate_proj
- model.layers.20.mlp.gate_proj
- model.layers.23.mlp.gate_proj
- model.layers.19.mlp.gate_proj
- model.layers.4.mlp.gate_proj
- model.layers.18.mlp.gate_proj
- model.layers.17.mlp.gate_proj
- model.layers.5.mlp.gate_proj
- model.layers.24.mlp.gate_proj
# mlp.up_proj layers
- model.layers.4.mlp.up_proj
- model.layers.3.mlp.up_proj
- model.layers.5.mlp.up_proj
- model.layers.6.mlp.up_proj
- model.layers.7.mlp.up_proj
- model.layers.2.mlp.up_proj
- model.layers.8.mlp.up_proj
- model.layers.14.mlp.up_proj
- model.layers.13.mlp.up_proj
- model.layers.11.mlp.up_proj
- model.layers.9.mlp.up_proj
- model.layers.1.mlp.up_proj
- model.layers.15.mlp.up_proj
- model.layers.12.mlp.up_proj
# self_attn.k_proj layers
- model.layers.25.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.19.self_attn.k_proj
- model.layers.20.self_attn.k_proj
- model.layers.17.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.18.self_attn.k_proj
- model.layers.21.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.15.self_attn.k_proj
- model.layers.10.self_attn.k_proj
- model.layers.6.self_attn.k_proj
- model.layers.5.self_attn.k_proj
# self_attn.o_proj layers
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0 # no noisy embedding to ensure maximal memorization
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 690
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
outputs/lora-out
This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6802
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 690
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3589 | 0.0004 | 1 | 1.5640 |
0.9936 | 0.4984 | 1154 | 0.9440 |
0.8384 | 0.9968 | 2308 | 0.8392 |
0.8226 | 1.4963 | 3462 | 0.7802 |
0.6568 | 1.9949 | 4616 | 0.7059 |
0.5163 | 2.4923 | 5770 | 0.6886 |
0.492 | 2.9922 | 6924 | 0.6802 |
Framework versions
- Transformers 4.45.0
- Pytorch 2.3.1+cu121
- Datasets 2.21.0
- Tokenizers 0.20.0