File size: 4,044 Bytes
ddfadb5 18ab81f ddfadb5 18ab81f e7877dc a8ee81a 18ab81f 472637c 17e3c12 807669c 18ab81f b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 18ab81f b7fc09d 0d1c1a8 b7fc09d 18ab81f 51ccaf7 18ab81f b94bf17 2a7e658 a76790f 2a7e658 18ab81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
---
license: apache-2.0
library_name: transformers
---
# Laser-Dolphin-Mixtral-4x7b-dpo
*New version is coming because of chat template issues. The other MoE models in my collection do not have this issue and have been tested more*
![laser_dolphin_image](./dolphin_moe.png)
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
#### Notes:
This dolphin is not suited for code creation tasks, but performs very well on creation and math based tasks.
DPO being used in only a portion of the merge seems to be causing issues with code creation.
## Code Example
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```
## GGUF
Q4_K_M and Q5_K_M quants are available [here](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-4x7b-dpo-GGUF)
![dolphin-cpp-2](dolphin-cpp-2.png)
## Eval
**Models were evaluated in 4bit due to GPU requirements**
I will evaluate on colab with an A100 asap
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 0|acc |0.5538|± |0.0145|
| | |none | 0|acc_norm|0.5734|± |0.0145|
|arc_easy |Yaml |none | 0|acc |0.8291|± |0.0077|
| | |none | 0|acc_norm|0.7807|± |0.0085|
|boolq |Yaml |none | 0|acc |0.8694|± |0.0059|
|hellaswag |Yaml |none | 0|acc |0.6402|± |0.0048|
| | |none | 0|acc_norm|0.8233|± |0.0038|
|openbookqa |Yaml |none | 0|acc |0.3380|± |0.0212|
| | |none | 0|acc_norm|0.4720|± |0.0223|
|piqa |Yaml |none | 0|acc |0.8123|± |0.0091|
| | |none | 0|acc_norm|0.8221|± |0.0089|
|winogrande |Yaml |none | 0|acc |0.7348|± |0.0124|
## Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```
```bibtex
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
``` |