Laser-Dolphin-Mixtral-4x7b-dpo
Credit to Fernando Fernandes and Eric Hartford for their project laserRMT
This model is a medium-sized MoE implementation based on cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
The process is outlined in this notebook
Code Example
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-4x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
Example output
can you write me a quicksort algorithm in python?
Sure, here's a quicksort algorithm implemented in Python:
def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)
This implementation uses the median of the array as the pivot. It first checks if the array has one or fewer elements, in which case it is already sorted and can be returned as is. Otherwise, it selects the pivot as the middle element of the array. Then, it partitions the array into three sub-arrays: elements less than the pivot, elements equal to the pivot, and elements greater than the pivot. It recursively sorts the left and right sub-arrays and concatenates the results with the middle sub-array to obtain the final sorted array.
Quantization
Eval
Model evaluated in 4bit
----Benchmark Complete---- + 2024-01-24 15:03:08 + Time taken: 37.4 mins + Prompt Format: Mistral + Model: macadeliccc/laser-dolphin-mixtral-4x7b-dpo + Score (v2): 71.04 + Parseable: 169.0
Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 66.71 |
AI2 Reasoning Challenge (25-Shot) | 64.93 |
HellaSwag (10-Shot) | 85.81 |
MMLU (5-Shot) | 63.04 |
TruthfulQA (0-shot) | 63.77 |
Winogrande (5-shot) | 77.82 |
GSM8k (5-shot) | 44.88 |
- Downloads last month
- 868
Model tree for macadeliccc/laser-dolphin-mixtral-4x7b-dpo
Collection including macadeliccc/laser-dolphin-mixtral-4x7b-dpo
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard64.930
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard85.810
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard63.040
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard63.770
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.820
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard44.880