|
--- |
|
license: apache-2.0 |
|
library_name: transformers |
|
model-index: |
|
- name: laser-dolphin-mixtral-2x7b-dpo |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 65.96 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 85.8 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 63.17 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 60.76 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 79.01 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 48.29 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
name: Open LLM Leaderboard |
|
--- |
|
# Laser-Dolphin-Mixtral-2x7b-dpo |
|
|
|
![laser_dolphin_image](./dolphin_moe.png) |
|
|
|
**New Version out now!** |
|
|
|
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT) |
|
|
|
## Overview |
|
|
|
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) |
|
|
|
+ The new version shows ~1 point increase in evaluation performance on average. |
|
|
|
## Process |
|
|
|
+ The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb) |
|
|
|
+ The mergekit_config is in the files. |
|
|
|
+ The models used in the configuration are not lasered, but the final product is. This is an update from the last version. |
|
|
|
+ This process is experimental. Your mileage may vary. |
|
|
|
## Future Goals |
|
|
|
+ [ ] Function Calling |
|
+ [ ] v2 with new base model to improve performance |
|
|
|
## Quantizations |
|
|
|
### ExLlamav2 |
|
|
|
_These are the recommended quantizations for users that are running the model on GPU_ |
|
|
|
Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here: |
|
|
|
+ [bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2) |
|
|
|
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | |
|
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ | |
|
| [8_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | 13.7 GB | 15.1 GB | 17.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | |
|
| [6_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | 11.5 GB | 12.9 GB | 15.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | |
|
| [5_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | 9.3 GB | 10.7 GB | 12.8 GB | Slightly lower quality vs 6.5, great for 12gb cards with 16k context. | |
|
| [4_25](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/4_25) | 4.25 | 6.0 | 8.2 GB | 9.6 GB | 11.7 GB | GPTQ equivalent bits per weight. | |
|
| [3_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/3_5) | 3.5 | 6.0 | 7.0 GB | 8.4 GB | 10.5 GB | Lower quality, not recommended. | |
|
|
|
His quantizations represent the first ~13B model with GQA support. Check out his repo for more information! |
|
|
|
### GGUF |
|
|
|
*Current GGUF [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF)* |
|
|
|
### AWQ |
|
|
|
*Current AWQ [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ) |
|
|
|
### TheBloke |
|
|
|
**These Quants will result in unpredicted behavior. New quants are available as I have updated the model** |
|
|
|
Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF) |
|
|
|
## HF Spaces |
|
+ GGUF chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat-GGUF) |
|
+ 4-bit bnb chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat) |
|
|
|
# Ollama |
|
|
|
```bash |
|
ollama run macadeliccc/laser-dolphin-mixtral-2x7b-dpo |
|
``` |
|
|
|
![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F6455cc8d679315e4ef16fbec%2FoVwa7Dwkt00tk8_MtlJdR.png%3C%2Fspan%3E)%3C%2Fspan%3E%3C!-- HTML_TAG_END --> |
|
|
|
## Code Example |
|
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def generate_response(prompt): |
|
""" |
|
Generate a response from the model based on the input prompt. |
|
|
|
Args: |
|
prompt (str): Prompt for the model. |
|
|
|
Returns: |
|
str: The generated response from the model. |
|
""" |
|
# Tokenize the input prompt |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
# Generate output tokens |
|
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) |
|
|
|
# Decode the generated tokens to a string |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return response |
|
|
|
# Load the model and tokenizer |
|
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) |
|
|
|
prompt = "Write a quicksort algorithm in python" |
|
|
|
# Generate and print responses for each language |
|
print("Response:") |
|
print(generate_response(prompt), "\n") |
|
``` |
|
|
|
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example |
|
|
|
## Eval |
|
|
|
## EQ Bench |
|
|
|
<pre>----Benchmark Complete---- |
|
2024-01-31 16:55:37 |
|
Time taken: 31.1 mins |
|
Prompt Format: ChatML |
|
Model: macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF |
|
Score (v2): 72.76 |
|
Parseable: 171.0 |
|
--------------- |
|
Batch completed |
|
Time taken: 31.2 mins |
|
--------------- |
|
</pre> |
|
|
|
|
|
|
|
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing) |
|
## Summary of previous evaluation |
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87| |
|
|
|
## Detailed current evaluation |
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 42.25| 73.45| 63.44| 43.96| 55.77| |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57| |
|
| | |acc_norm|21.65|± | 2.59| |
|
|agieval_logiqa_en | 0|acc |34.72|± | 1.87| |
|
| | |acc_norm|35.64|± | 1.88| |
|
|agieval_lsat_ar | 0|acc |26.96|± | 2.93| |
|
| | |acc_norm|26.96|± | 2.93| |
|
|agieval_lsat_lr | 0|acc |45.88|± | 2.21| |
|
| | |acc_norm|46.08|± | 2.21| |
|
|agieval_lsat_rc | 0|acc |59.48|± | 3.00| |
|
| | |acc_norm|59.48|± | 3.00| |
|
|agieval_sat_en | 0|acc |73.79|± | 3.07| |
|
| | |acc_norm|73.79|± | 3.07| |
|
|agieval_sat_en_without_passage| 0|acc |42.23|± | 3.45| |
|
| | |acc_norm|41.26|± | 3.44| |
|
|agieval_sat_math | 0|acc |37.27|± | 3.27| |
|
| | |acc_norm|33.18|± | 3.18| |
|
|
|
Average: 42.25% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |58.36|± | 1.44| |
|
| | |acc_norm|58.02|± | 1.44| |
|
|arc_easy | 0|acc |82.20|± | 0.78| |
|
| | |acc_norm|77.40|± | 0.86| |
|
|boolq | 1|acc |87.52|± | 0.58| |
|
|hellaswag | 0|acc |67.50|± | 0.47| |
|
| | |acc_norm|84.43|± | 0.36| |
|
|openbookqa | 0|acc |34.40|± | 2.13| |
|
| | |acc_norm|47.00|± | 2.23| |
|
|piqa | 0|acc |81.61|± | 0.90| |
|
| | |acc_norm|82.59|± | 0.88| |
|
|winogrande | 0|acc |77.19|± | 1.18| |
|
|
|
|
|
Average: 73.45% |
|
|
|
### GSM8K |
|
|Task |Version| Metric |Value| |Stderr| |
|
|-----|------:|-----------------------------|-----|---|------| |
|
|gsm8k| 2|exact_match,get-answer | 0.75| | | |
|
| | |exact_match_stderr,get-answer| 0.01| | | |
|
| | |alias |gsm8k| | | |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |45.90|± | 1.74| |
|
| | |mc2 |63.44|± | 1.56| |
|
|
|
Average: 63.44% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|58.42|± | 3.59| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|60.70|± | 2.55| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|38.37|± | 3.03| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.73|± | 2.18| |
|
| | |exact_str_match | 0.00|± | 0.00| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|35.00|± | 2.14| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.57|± | 1.61| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|50.33|± | 2.89| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.00|± | 2.23| |
|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.35|± | 1.09| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|51.12|± | 2.36| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|32.26|± | 1.48| |
|
|bigbench_snarks | 0|multiple_choice_grade|67.96|± | 3.48| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.59|± | 1.45| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|35.80|± | 1.52| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.20|± | 0.90| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|50.33|± | 2.89| |
|
|
|
Average: 43.96% |
|
|
|
Average score: 55.77% |
|
|
|
Elapsed time: 02:43:45 |
|
## Citations |
|
|
|
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024. |
|
|
|
```bibtex |
|
@article{sharma2023truth, |
|
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction}, |
|
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra}, |
|
journal={arXiv preprint arXiv:2312.13558}, |
|
year={2023} } |
|
``` |
|
|
|
```bibtex |
|
@article{gao2021framework, |
|
title={A framework for few-shot language model evaluation}, |
|
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others}, |
|
journal={Version v0. 0.1. Sept}, |
|
year={2021} |
|
} |
|
``` |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-dolphin-mixtral-2x7b-dpo) |
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |67.16| |
|
|AI2 Reasoning Challenge (25-Shot)|65.96| |
|
|HellaSwag (10-Shot) |85.80| |
|
|MMLU (5-Shot) |63.17| |
|
|TruthfulQA (0-shot) |60.76| |
|
|Winogrande (5-shot) |79.01| |
|
|GSM8k (5-shot) |48.29| |
|
|
|
|