NLI-Lora-Fine-Tuning-10K

This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8405
  • Accuracy: 0.6071

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 312 1.0533 0.4667
1.0642 2.0 624 1.0234 0.5033
1.0642 3.0 936 0.9616 0.5467
1.0052 4.0 1248 0.9010 0.5795
0.9162 5.0 1560 0.8750 0.5876
0.9162 6.0 1872 0.8606 0.5959
0.8817 7.0 2184 0.8512 0.6019
0.8817 8.0 2496 0.8452 0.6051
0.8618 9.0 2808 0.8416 0.6071
0.8551 10.0 3120 0.8405 0.6071

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for m4faisal/NLI-Lora-Fine-Tuning-10K

Adapter
(8)
this model

Space using m4faisal/NLI-Lora-Fine-Tuning-10K 1