Model Card for Model ID
Model Details
Model Description
The model consists of a music encoder MERT-v1-300M
, a natural language decoder vicuna-7b-delta-v0
, and a linear projection laer between the two.
This checkpoint of MusiLingo is developed on the MusicInstruct (MI)-long and can answer long instructions with music raw audio, such as querying about the subjective feelings etc.
You can use the MI dataset for the following demo
Model Sources [optional]
Getting Start
from tqdm.auto import tqdm
import torch
from torch.utils.data import DataLoader
from transformers import Wav2Vec2FeatureExtractor
from transformers import StoppingCriteria, StoppingCriteriaList
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
if torch.all((stop == input_ids[0][-len(stop):])).item():
return True
return False
def get_musilingo_pred(model, text, audio_path, stopping, length_penalty=1, temperature=0.1,
max_new_tokens=300, num_beams=1, min_length=1, top_p=0.5, repetition_penalty=1.0):
# see https://huggingface.co/m-a-p/MusiLingo-musicqa-v1 for load_audio function definition
audio = load_audio(audio_path, target_sr=24000,
is_mono=True,
is_normalize=False,
crop_to_length_in_sample_points=int(30*16000)+1,
crop_randomly=True,
pad=False).cuda()
processor = Wav2Vec2FeatureExtractor.from_pretrained("m-a-p/MERT-v1-330M",trust_remote_code=True)
audio = processor(audio,
sampling_rate=24000,
return_tensors="pt")['input_values'][0].cuda()
audio_embeds, atts_audio = model.encode_audio(audio)
prompt = '<Audio><AudioHere></Audio> ' + text
instruction_prompt = [model.prompt_template.format(prompt)]
audio_embeds, atts_audio = model.instruction_prompt_wrap(audio_embeds, atts_audio, instruction_prompt)
model.llama_tokenizer.padding_side = "right"
batch_size = audio_embeds.shape[0]
bos = torch.ones([batch_size, 1],
dtype=torch.long,
device=torch.device('cuda')) * model.llama_tokenizer.bos_token_id
bos_embeds = model.llama_model.model.embed_tokens(bos)
# atts_bos = atts_audio[:, :1]
inputs_embeds = torch.cat([bos_embeds, audio_embeds], dim=1)
# attention_mask = torch.cat([atts_bos, atts_audio], dim=1)
outputs = model.llama_model.generate(
inputs_embeds=inputs_embeds,
max_new_tokens=max_new_tokens,
stopping_criteria=stopping,
num_beams=num_beams,
do_sample=True,
min_length=min_length,
top_p=top_p,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
temperature=temperature,
)
output_token = outputs[0]
if output_token[0] == 0: # the model might output a unknow token <unk> at the beginning. remove it
output_token = output_token[1:]
if output_token[0] == 1: # if there is a start token <s> at the beginning. remove it
output_token = output_token[1:]
output_text = model.llama_tokenizer.decode(output_token, add_special_tokens=False)
output_text = output_text.split('###')[0] # remove the stop sign '###'
output_text = output_text.split('Assistant:')[-1].strip()
return output_text
musilingo = AutoModel.from_pretrained("m-a-p/MusiLingo-long-v1", trust_remote_code=True)
musilingo.to("cuda")
musilingo.eval()
prompt = "this is the task instruction and input question for MusiLingo model"
audio = "/path/to/the/audio"
stopping = StoppingCriteriaList([StoppingCriteriaSub([torch.tensor([835]).cuda(),
torch.tensor([2277, 29937]).cuda()])])
response = get_musilingo_pred(musilingo.model, prompt, audio_path, stopping, length_penalty=100, temperature=0.1)
Citing This Work
If you find the work useful for your research, please consider citing it using the following BibTeX entry:
@inproceedings{deng2024musilingo,
title={MusiLingo: Bridging Music and Text with Pre-trained Language Models for Music Captioning and Query Response},
author={Deng, Zihao and Ma, Yinghao and Liu, Yudong and Guo, Rongchen and Zhang, Ge and Chen, Wenhu and Huang, Wenhao and Benetos, Emmanouil},
booktitle={Proceedings of the 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL 2024)},
year={2024},
organization={Association for Computational Linguistics}
}