metadata
tags:
- SpaceInvadersNoFrameskip-v4
- deep-reinforcement-learning
- reinforcement-learning
- custom-implementation
library_name: cleanrl
model-index:
- name: DQN
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: SpaceInvadersNoFrameskip-v4
type: SpaceInvadersNoFrameskip-v4
metrics:
- type: mean_reward
value: 523.50 +/- 219.93
name: mean_reward
verified: false
(CleanRL) DQN Agent Playing SpaceInvadersNoFrameskip-v4
This is a trained model of a DQN agent playing SpaceInvadersNoFrameskip-v4. The model was trained by using CleanRL and the most up-to-date training code can be found here.
Get Started
To use this model, please install the cleanrl
package with the following command:
pip install "cleanrl[dqn_atari]"
python -m cleanrl_utils.enjoy --exp-name dqn_atari --env-id SpaceInvadersNoFrameskip-v4
Please refer to the documentation for more detail.
Command to reproduce the training
curl -OL https://huggingface.co/lyusungwon/SpaceInvadersNoFrameskip-v4-dqn_atari-seed2/raw/main/dqn_atari.py
curl -OL https://huggingface.co/lyusungwon/SpaceInvadersNoFrameskip-v4-dqn_atari-seed2/raw/main/pyproject.toml
curl -OL https://huggingface.co/lyusungwon/SpaceInvadersNoFrameskip-v4-dqn_atari-seed2/raw/main/poetry.lock
poetry install --all-extras
python dqn_atari.py --cuda --save-model --upload-model --hf-entity lyusungwon --env-id SpaceInvadersNoFrameskip-v4 --total-timesteps 1000000 --seed 2
Hyperparameters
{'batch_size': 32,
'buffer_size': 1000000,
'capture_video': False,
'cuda': True,
'end_e': 0.01,
'env_id': 'SpaceInvadersNoFrameskip-v4',
'exp_name': 'dqn_atari',
'exploration_fraction': 0.1,
'gamma': 0.99,
'hf_entity': 'lyusungwon',
'learning_rate': 0.0001,
'learning_starts': 80000,
'save_model': True,
'seed': 2,
'start_e': 1,
'target_network_frequency': 1000,
'tau': 1.0,
'torch_deterministic': True,
'total_timesteps': 1000000,
'track': False,
'train_frequency': 4,
'upload_model': True,
'wandb_entity': None,
'wandb_project_name': 'cleanRL'}