lv12's picture
Add new SentenceTransformer model.
d791124 verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - dataset_size:100K<n<1M
  - loss:CachedMultipleNegativesRankingLoss
base_model: nomic-ai/nomic-embed-text-v1.5
metrics:
  - cosine_accuracy
  - dot_accuracy
  - manhattan_accuracy
  - euclidean_accuracy
  - max_accuracy
widget:
  - source_sentence: 'search_query: shark'
    sentences:
      - 'search_query: skull'
      - 'search_query: car picture frame'
      - 'search_query: cartera de guchi'
  - source_sentence: 'search_query: aolvo'
    sentences:
      - 'search_query: laço homem'
      - 'search_query: vdi to hdmi cable'
      - 'search_query: beads without holes'
  - source_sentence: 'search_query: 赤色のカバン'
    sentences:
      - 'search_query: 結婚式 ガーランド'
      - 'search_query: remaches zapatero'
      - 'search_query: small feaux potted plants'
  - source_sentence: 'search_query: vipkid'
    sentences:
      - 'search_query: ceiling lamps for kids'
      - 'search_query: apple あいふぉんケース 12'
      - 'search_query: zapatos zaragoza mujer'
  - source_sentence: 'search_query: お布団バッグ'
    sentences:
      - 'search_query: 足なしソファー'
      - 'search_query: all color handbag'
      - 'search_query: tundra black out emblems'
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: triplet esci
          type: triplet-esci
        metrics:
          - type: cosine_accuracy
            value: 0.787
            name: Cosine Accuracy
          - type: dot_accuracy
            value: 0.22
            name: Dot Accuracy
          - type: manhattan_accuracy
            value: 0.762
            name: Manhattan Accuracy
          - type: euclidean_accuracy
            value: 0.768
            name: Euclidean Accuracy
          - type: max_accuracy
            value: 0.787
            name: Max Accuracy

SentenceTransformer based on nomic-ai/nomic-embed-text-v1.5

This is a sentence-transformers model finetuned from nomic-ai/nomic-embed-text-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/nomic-embed-text-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'search_query: お布団バッグ',
    'search_query: 足なしソファー',
    'search_query: all color handbag',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 0.787
dot_accuracy 0.22
manhattan_accuracy 0.762
euclidean_accuracy 0.768
max_accuracy 0.787

Training Details

Training Dataset

Unnamed Dataset

  • Size: 100,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 12.11 tokens
    • max: 47 tokens
    • min: 17 tokens
    • mean: 49.91 tokens
    • max: 166 tokens
    • min: 20 tokens
    • mean: 50.64 tokens
    • max: 152 tokens
  • Samples:
    anchor positive negative
    search_query: blー5c search_document: [EnergyPower] TECSUN PL-368 電池2個セット SSB・同期検波・長波 [交換用バッテリーBL-5C付] デジタルDSPポケット短波ラジオ 超小型 長・中波用外付アンテナ 10キー ポータブルBCL受信機 FMステレオ/LW/MW/SW ワールドバンドレシーバー 850局プリセットメモリー シグナルメーター USB充電 スリープタイマー アラー, TECSUN, PL-368 電池+セット [ブラック] search_document: RADIWOWで作る SIHUADON R108 ポータブル BCL短波ラジオAM FM LW SW 航空無線 DSPレシーバー LCD 良好屋内および屋外アクティビティの両親への贈り物, RADIWOW, グレー
    search_query: かわいいロングtシャツ search_document: レディース ロンt 半袖 tシャツ オーバーサイズ コットン スリット 大きいサイズ 白 シャツ ビッグシルエット ワンピース シャツワンピ ロングtシャツ おおきいサイズ 夏 ピンク カジュアル カップ付き カーディガン キラキラ キャミソール キャミ サテン シンプル シニア シフォン シースルー シ, Sleeping Sheep(スリーピング シープ), ホワイト search_document: Perkisboby スポーツウェア レディース ヨガウェア 4点セット 上下セット 5点セットウェア フィットネス 2点セット ジャージ スポーツブラ パンツ パーカー 半袖 ハーフパンツ, Perkisboby, 2点セット-グレー
    search_query: iphone xr otterbox symmetry case search_document: Symmetry Clear Series Case for iPhone XR (ONLY) Symmetry Case for iPhone XR Symmetry Case - Clear, VTSOU, Clear search_document: OtterBox Symmetry Series Case for Apple iPhone XS Max - Tonic Violet / Purple, OtterBox, Tonic Violet / Purple
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 7 tokens
    • mean: 12.13 tokens
    • max: 49 tokens
    • min: 15 tokens
    • mean: 50.76 tokens
    • max: 173 tokens
    • min: 18 tokens
    • mean: 54.25 tokens
    • max: 161 tokens
  • Samples:
    anchor positive negative
    search_query: snack vending machine search_document: Red All Metal Triple Compartment Commercial Vending Machine for 1 inch Gumballs, 1 inch Toy Capsules, Bouncy Balls, Candy, Nuts with Stand by American Gumball Company, American Gumball Company, CANDY RED search_document: Vending Machine Halloween Costume - Funny Snack Food Adult Men & Women Outfits, Hauntlook, Multicolored
    search_query: slim credit card holder without id window search_document: Banuce Top Grain Leather Card Holder for Women Men Unisex ID Credit Card Case Slim Card Wallet Black, Banuce, 1 ID + 5 Card Slots: Black search_document: Mens Wallet RFID Genuine Leather Bifold Wallets For Men, ID Window 16 Card Holders Gift Box, Swallowmall, Black Stripe
    search_query: gucci belts for women search_document: Gucci Women's Gg0027o 50Mm Optical Glasses, Gucci, Havana search_document: Gucci G-Gucci Gold PVD Women's Watch(Model:YA125511), Gucci, PVD/Brown
  • Loss: CachedMultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • gradient_accumulation_steps: 2
  • learning_rate: 1e-06
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: True
  • per_device_train_batch_size: 4
  • per_device_eval_batch_size: 4
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 1e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 4
  • dataloader_prefetch_factor: 2
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss triplet-esci_cosine_accuracy
0.008 100 0.7191 - -
0.016 200 0.6917 - -
0.024 300 0.7129 - -
0.032 400 0.6826 - -
0.04 500 0.7317 - -
0.048 600 0.7237 - -
0.056 700 0.6904 - -
0.064 800 0.6815 - -
0.072 900 0.6428 - -
0.08 1000 0.6561 0.6741 0.74
0.088 1100 0.6097 - -
0.096 1200 0.6426 - -
0.104 1300 0.618 - -
0.112 1400 0.6346 - -
0.12 1500 0.611 - -
0.128 1600 0.6092 - -
0.136 1700 0.6512 - -
0.144 1800 0.646 - -
0.152 1900 0.6584 - -
0.16 2000 0.6403 0.6411 0.747
0.168 2100 0.5882 - -
0.176 2200 0.6361 - -
0.184 2300 0.5641 - -
0.192 2400 0.5734 - -
0.2 2500 0.6156 - -
0.208 2600 0.6252 - -
0.216 2700 0.634 - -
0.224 2800 0.5743 - -
0.232 2900 0.5222 - -
0.24 3000 0.5604 0.6180 0.765
0.248 3100 0.5864 - -
0.256 3200 0.5541 - -
0.264 3300 0.5661 - -
0.272 3400 0.5493 - -
0.28 3500 0.556 - -
0.288 3600 0.56 - -
0.296 3700 0.5552 - -
0.304 3800 0.5833 - -
0.312 3900 0.5578 - -
0.32 4000 0.5495 0.6009 0.769
0.328 4100 0.5245 - -
0.336 4200 0.477 - -
0.344 4300 0.5536 - -
0.352 4400 0.5493 - -
0.36 4500 0.532 - -
0.368 4600 0.5341 - -
0.376 4700 0.528 - -
0.384 4800 0.5574 - -
0.392 4900 0.4953 - -
0.4 5000 0.5365 0.5969 0.779
0.408 5100 0.4835 - -
0.416 5200 0.4573 - -
0.424 5300 0.5554 - -
0.432 5400 0.5623 - -
0.44 5500 0.5955 - -
0.448 5600 0.5086 - -
0.456 5700 0.5081 - -
0.464 5800 0.4829 - -
0.472 5900 0.5066 - -
0.48 6000 0.4997 0.5920 0.776
0.488 6100 0.5075 - -
0.496 6200 0.5051 - -
0.504 6300 0.5019 - -
0.512 6400 0.4774 - -
0.52 6500 0.4975 - -
0.528 6600 0.4756 - -
0.536 6700 0.4656 - -
0.544 6800 0.4671 - -
0.552 6900 0.4646 - -
0.56 7000 0.5595 0.5853 0.777
0.568 7100 0.4812 - -
0.576 7200 0.506 - -
0.584 7300 0.49 - -
0.592 7400 0.464 - -
0.6 7500 0.441 - -
0.608 7600 0.4492 - -
0.616 7700 0.457 - -
0.624 7800 0.493 - -
0.632 7900 0.4174 - -
0.64 8000 0.4686 0.5809 0.785
0.648 8100 0.4529 - -
0.656 8200 0.4784 - -
0.664 8300 0.4697 - -
0.672 8400 0.4489 - -
0.68 8500 0.4439 - -
0.688 8600 0.4063 - -
0.696 8700 0.4634 - -
0.704 8800 0.4446 - -
0.712 8900 0.4725 - -
0.72 9000 0.3954 0.5769 0.781
0.728 9100 0.4536 - -
0.736 9200 0.4583 - -
0.744 9300 0.4415 - -
0.752 9400 0.4716 - -
0.76 9500 0.4393 - -
0.768 9600 0.4332 - -
0.776 9700 0.4236 - -
0.784 9800 0.4021 - -
0.792 9900 0.4324 - -
0.8 10000 0.4197 0.5796 0.78
0.808 10100 0.4576 - -
0.816 10200 0.4238 - -
0.824 10300 0.4468 - -
0.832 10400 0.4301 - -
0.84 10500 0.414 - -
0.848 10600 0.4563 - -
0.856 10700 0.4212 - -
0.864 10800 0.3905 - -
0.872 10900 0.4384 - -
0.88 11000 0.3474 0.5709 0.788
0.888 11100 0.4396 - -
0.896 11200 0.3819 - -
0.904 11300 0.3748 - -
0.912 11400 0.4217 - -
0.92 11500 0.3893 - -
0.928 11600 0.3835 - -
0.936 11700 0.4303 - -
0.944 11800 0.4274 - -
0.952 11900 0.4089 - -
0.96 12000 0.4009 0.5710 0.786
0.968 12100 0.3832 - -
0.976 12200 0.3543 - -
0.984 12300 0.4866 - -
0.992 12400 0.4531 - -
1.0 12500 0.3728 - -
1.008 12600 0.386 - -
1.016 12700 0.3622 - -
1.024 12800 0.4013 - -
1.032 12900 0.3543 - -
1.04 13000 0.3918 0.5712 0.792
1.048 13100 0.3961 - -
1.056 13200 0.3804 - -
1.064 13300 0.4049 - -
1.072 13400 0.3374 - -
1.08 13500 0.3746 - -
1.088 13600 0.3162 - -
1.096 13700 0.3536 - -
1.104 13800 0.3101 - -
1.112 13900 0.3704 - -
1.12 14000 0.3412 0.5758 0.788
1.1280 14100 0.342 - -
1.1360 14200 0.383 - -
1.144 14300 0.3554 - -
1.152 14400 0.4013 - -
1.16 14500 0.3486 - -
1.168 14600 0.3367 - -
1.176 14700 0.3737 - -
1.184 14800 0.319 - -
1.192 14900 0.3211 - -
1.2 15000 0.3284 0.5804 0.787

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.0
  • Transformers: 4.38.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.27.2
  • Datasets: 2.19.1
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CachedMultipleNegativesRankingLoss

@misc{gao2021scaling,
    title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, 
    author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
    year={2021},
    eprint={2101.06983},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}