SentenceTransformer based on lufercho/my-finetuned-bert-mlm
This is a sentence-transformers model finetuned from lufercho/my-finetuned-bert-mlm. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: lufercho/my-finetuned-bert-mlm
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("lufercho/my-finetuned-sentence-bert")
# Run inference
sentences = [
'Maximin affinity learning of image segmentation',
' Images can be segmented by first using a classifier to predict an affinity\ngraph that reflects the degree to which image pixels must be grouped together\nand then partitioning the graph to yield a segmentation. Machine learning has\nbeen applied to the affinity classifier to produce affinity graphs that are\ngood in the sense of minimizing edge misclassification rates. However, this\nerror measure is only indirectly related to the quality of segmentations\nproduced by ultimately partitioning the affinity graph. We present the first\nmachine learning algorithm for training a classifier to produce affinity graphs\nthat are good in the sense of producing segmentations that directly minimize\nthe Rand index, a well known segmentation performance measure. The Rand index\nmeasures segmentation performance by quantifying the classification of the\nconnectivity of image pixel pairs after segmentation. By using the simple graph\npartitioning algorithm of finding the connected components of the thresholded\naffinity graph, we are able to train an affinity classifier to directly\nminimize the Rand index of segmentations resulting from the graph partitioning.\nOur learning algorithm corresponds to the learning of maximin affinities\nbetween image pixel pairs, which are predictive of the pixel-pair connectivity.\n',
' Changes in the UK electricity market mean that domestic users will be\nrequired to modify their usage behaviour in order that supplies can be\nmaintained. Clustering allows usage profiles collected at the household level\nto be clustered into groups and assigned a stereotypical profile which can be\nused to target marketing campaigns. Fuzzy C Means clustering extends this by\nallowing each household to be a member of many groups and hence provides the\nopportunity to make personalised offers to the household dependent on their\ndegree of membership of each group. In addition, feedback can be provided on\nhow user\'s changing behaviour is moving them towards more "green" or cost\neffective stereotypical usage.\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,000 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 13.41 tokens
- max: 38 tokens
- min: 37 tokens
- mean: 201.32 tokens
- max: 512 tokens
- min: 24 tokens
- mean: 204.09 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 sentence_2 Clustering with Transitive Distance and K-Means Duality
Recent spectral clustering methods are a propular and powerful technique for
data clustering. These methods need to solve the eigenproblem whose
computational complexity is $O(n^3)$, where $n$ is the number of data samples.
In this paper, a non-eigenproblem based clustering method is proposed to deal
with the clustering problem. Its performance is comparable to the spectral
clustering algorithms but it is more efficient with computational complexity
$O(n^2)$. We show that with a transitive distance and an observed property,
called K-means duality, our algorithm can be used to handle data sets with
complex cluster shapes, multi-scale clusters, and noise. Moreover, no
parameters except the number of clusters need to be set in our algorithm.We show that the log-likelihood of several probabilistic graphical models is
Lipschitz continuous with respect to the lp-norm of the parameters. We discuss
several implications of Lipschitz parametrization. We present an upper bound of
the Kullback-Leibler divergence that allows understanding methods that penalize
the lp-norm of differences of parameters as the minimization of that upper
bound. The expected log-likelihood is lower bounded by the negative lp-norm,
which allows understanding the generalization ability of probabilistic models.
The exponential of the negative lp-norm is involved in the lower bound of the
Bayes error rate, which shows that it is reasonable to use parameters as
features in algorithms that rely on metric spaces (e.g. classification,
dimensionality reduction, clustering). Our results do not rely on specific
algorithms for learning the structure or parameters. We show preliminary
results for activity recognition and temporal segmentation.Clustering Dynamic Web Usage Data
Most classification methods are based on the assumption that data conforms to
a stationary distribution. The machine learning domain currently suffers from a
lack of classification techniques that are able to detect the occurrence of a
change in the underlying data distribution. Ignoring possible changes in the
underlying concept, also known as concept drift, may degrade the performance of
the classification model. Often these changes make the model inconsistent and
regular updatings become necessary. Taking the temporal dimension into account
during the analysis of Web usage data is a necessity, since the way a site is
visited may indeed evolve due to modifications in the structure and content of
the site, or even due to changes in the behavior of certain user groups. One
solution to this problem, proposed in this article, is to update models using
summaries obtained by means of an evolutionary approach based on an intelligent
clustering approach. We carry out various clustering str...Exponential family extensions of principal component analysis (EPCA) have
received a considerable amount of attention in recent years, demonstrating the
growing need for basic modeling tools that do not assume the squared loss or
Gaussian distribution. We extend the EPCA model toolbox by presenting the first
exponential family multi-view learning methods of the partial least squares and
canonical correlation analysis, based on a unified representation of EPCA as
matrix factorization of the natural parameters of exponential family. The
models are based on a new family of priors that are generally usable for all
such factorizations. We also introduce new inference strategies, and
demonstrate how the methods outperform earlier ones when the Gaussianity
assumption does not hold.Trading USDCHF filtered by Gold dynamics via HMM coupling
We devise a USDCHF trading strategy using the dynamics of gold as a filter.
Our strategy involves modelling both USDCHF and gold using a coupled hidden
Markov model (CHMM). The observations will be indicators, RSI and CCI, which
will be used as triggers for our trading signals. Upon decoding the model in
each iteration, we can get the next most probable state and the next most
probable observation. Hopefully by taking advantage of intermarket analysis and
the Markov property implicit in the model, trading with these most probable
values will produce profitable results.Most existing machine learning classifiers are highly vulnerable to
adversarial examples. An adversarial example is a sample of input data which
has been modified very slightly in a way that is intended to cause a machine
learning classifier to misclassify it. In many cases, these modifications can
be so subtle that a human observer does not even notice the modification at
all, yet the classifier still makes a mistake. Adversarial examples pose
security concerns because they could be used to perform an attack on machine
learning systems, even if the adversary has no access to the underlying model.
Up to now, all previous work have assumed a threat model in which the adversary
can feed data directly into the machine learning classifier. This is not always
the case for systems operating in the physical world, for example those which
are using signals from cameras and other sensors as an input. This paper shows
that even in such physical world scenarios, machine learning systems are
vul... - Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 2multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
1.5974 | 500 | 0.8647 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for lufercho/my-finetuned-sentence-bert
Base model
lufercho/my-finetuned-bert-mlm