|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- DeepMount00/Minerva-3B-base-RAG |
|
- FairMind/Minerva-3B-Instruct-v1.0 |
|
base_model: |
|
- DeepMount00/Minerva-3B-base-RAG |
|
- FairMind/Minerva-3B-Instruct-v1.0 |
|
--- |
|
|
|
# Minerva-MoE-3x3B |
|
|
|
Minerva-MoE-3x3B is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [DeepMount00/Minerva-3B-base-RAG](https://huggingface.co/DeepMount00/Minerva-3B-base-RAG) |
|
* [FairMind/Minerva-3B-Instruct-v1.0](https://huggingface.co/FairMind/Minerva-3B-Instruct-v1.0) |
|
|
|
## Evaluation |
|
arc_it acc_norm: 31.91 |
|
hellaswag_it acc_norm: 52.20 |
|
mmmlu_it: 25.72 |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: sapienzanlp/Minerva-3B-base-v1.0 |
|
experts: |
|
- source_model: DeepMount00/Minerva-3B-base-RAG |
|
positive_prompts: |
|
- "rispondi a domande" |
|
- "cosa è" |
|
- "chi è" |
|
- "dove è" |
|
- "come si" |
|
- "spiegami" |
|
- "definisci" |
|
- source_model: FairMind/Minerva-3B-Instruct-v1.0 |
|
positive_prompts: |
|
- "istruzione" |
|
- "input" |
|
- "risposta" |
|
- "scrivi" |
|
- "sequenza" |
|
- "istruzioni" |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "ludocomito/Minerva-MoE-3x3B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |