multilabel_classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2810
  • F1 Micro: 0.8770
  • F1 Macro: 0.7787
  • F1 Weighted: 0.8672
  • Precision: 0.8702
  • Recall: 0.8770
  • Accuracy: 0.8770

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro F1 Weighted Precision Recall Accuracy
No log 1.0 406 0.2865 0.8643 0.7287 0.8438 0.8620 0.8643 0.8643
0.2729 2.0 812 0.2924 0.8737 0.7671 0.8616 0.8671 0.8737 0.8737
0.216 3.0 1218 0.2810 0.8770 0.7787 0.8672 0.8702 0.8770 0.8770
0.1868 4.0 1624 0.2813 0.8787 0.7802 0.8685 0.8725 0.8787 0.8787
0.1728 5.0 2030 0.2944 0.8748 0.7794 0.8664 0.8673 0.8748 0.8748
0.1728 6.0 2436 0.2937 0.8825 0.7967 0.8760 0.8762 0.8825 0.8825
0.155 7.0 2842 0.3007 0.8848 0.8039 0.8795 0.8789 0.8848 0.8848
0.151 8.0 3248 0.3007 0.8875 0.8070 0.8818 0.8819 0.8875 0.8875
0.1359 9.0 3654 0.3031 0.8870 0.8077 0.8818 0.8814 0.8870 0.8870
0.1359 10.0 4060 0.3035 0.8881 0.8086 0.8826 0.8826 0.8881 0.8881

Framework versions

  • PEFT 0.11.1
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lucienbaumgartner/multilabel_classification

Adapter
(221)
this model