Model Card for Model ID

Multi-Label Classification Model from the Homework#4 in the Natural Language Processing class of Hanyang University.

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Louis MARTYR
  • Model type: Multi-Label Classification
  • Language(s) (NLP): English
  • Finetuned from model [optional]: FacebookAI/roberta-large

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

Epoch Training Loss Validation Loss Accuracy F1 Hamming

1 No log 0.072435 0.000000 0.000000 0.013605

2 No log 0.072522 0.000000 0.000000 0.013605

3 0.092900 0.072396 0.000000 0.000000 0.013605

4 0.092900 0.057199 0.000000 0.008461 0.013592

5 0.065500 0.026986 0.064111 0.316517 0.010247

6 0.065500 0.016471 0.773959 0.928884 0.001825

7 0.021900 0.012533 0.884997 0.961644 0.001097

8 0.021900 0.010155 0.917383 0.969257 0.000868

9 0.009300 0.009068 0.916061 0.967037 0.000935

10 0.009300 0.007922 0.923992 0.969573 0.000854

11 0.009300 0.007272 0.924653 0.970616 0.000818

12 0.005900 0.006749 0.929941 0.971468 0.000805

13 0.005900 0.006336 0.931923 0.972127 0.000773

14 0.004300 0.005852 0.931923 0.973525 0.000746

15 0.004300 0.005644 0.938533 0.974937 0.000697

16 0.003500 0.005535 0.931923 0.972501 0.000773

17 0.003500 0.005492 0.936550 0.974324 0.000737

18 0.003000 0.005351 0.937872 0.974378 0.000733

19 0.003000 0.005338 0.937872 0.975060 0.000719

20 0.002700 0.005275 0.940516 0.975551 0.000697 --> Best model

Results

Fine-tuned metrics:

{

'eval_loss': 0.005275276489555836,

'eval_accuracy': 0.9405155320555189,

'eval_f1': 0.97555142119219,

'eval_hamming': 0.0006969079766738156,

'eval_runtime': 7.2009,

'eval_samples_per_second': 210.114,

'eval_steps_per_second': 1.666,

'epoch': 20.0

}

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

Downloads last month
104
Safetensors
Model size
356M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for louis-martyr/multi-intent-detection-roBERTa

Finetuned
(298)
this model