lombardata's picture
Training in progress, epoch 1
c0efc49 verified
|
raw
history blame
7.72 kB
metadata
language:
  - eng
license: cc0-1.0
tags:
  - multilabel-image-classification
  - multilabel
  - generated_from_trainer
base_model: drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
model-index:
  - name: drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs
    results: []

drone-DinoVdeau-from-binary is a fine-tuned version of drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs. It achieves the following results on the test set:

  • Loss: 0.4693
  • F1 Micro: 0.0000
  • F1 Macro: 0.0000
  • Accuracy: 0.0000
  • RMSE: 0.1576
  • MAE: 0.1172
  • KL Divergence: 0.4185

Model description

drone-DinoVdeau-from-binary is a model built on top of drone-DinoVdeau-from-binary-large-2024_11_14-batch-size16_freeze_probs model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.

The source code for training the model can be found in this Git repository.


Intended uses & limitations

You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.


Training and evaluation data

Details on the estimated number of images for each class are given in the following table:

Class train test val Total
Acropore_branched 1220 363 362 1945
Acropore_digitised 586 195 189 970
Acropore_tabular 308 133 119 560
Algae 4777 1372 1384 7533
Dead_coral 2513 671 693 3877
Millepore 136 55 59 250
No_acropore_encrusting 252 88 93 433
No_acropore_massive 2158 725 726 3609
No_acropore_sub_massive 2036 582 612 3230
Rock 5976 1941 1928 9845
Rubble 4851 1486 1474 7811
Sand 6155 2019 1990 10164

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • Number of Epochs: 62.0
  • Learning Rate: 0.001
  • Train Batch Size: 16
  • Eval Batch Size: 16
  • Optimizer: Adam
  • LR Scheduler Type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
  • Freeze Encoder: Yes
  • Data Augmentation: Yes

Data Augmentation

Data were augmented using the following transformations :

Train Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • RandomHorizontalFlip: probability=0.25
  • RandomVerticalFlip: probability=0.25
  • ColorJiggle: probability=0.25
  • RandomPerspective: probability=0.25
  • Normalize: probability=1.00

Val Transforms

  • PreProcess: No additional parameters
  • Resize: probability=1.00
  • Normalize: probability=1.00

Training results

Epoch Validation Loss MAE RMSE KL div Learning Rate
1 0.4821413457393646 0.1308 0.1731 0.4219 0.001
2 0.4784533977508545 0.1263 0.1710 0.6148 0.001
3 0.47776785492897034 0.1273 0.1699 0.4880 0.001
4 0.4793245792388916 0.1290 0.1710 0.3418 0.001
5 0.47521594166755676 0.1280 0.1674 0.3456 0.001
6 0.478865385055542 0.1254 0.1707 0.6403 0.001
7 0.4779475927352905 0.1288 0.1709 0.5492 0.001
8 0.4756968021392822 0.1270 0.1678 0.3383 0.001
9 0.4731782376766205 0.1231 0.1657 0.5418 0.001
10 0.4799855649471283 0.1321 0.1723 0.1547 0.001
11 0.4731641411781311 0.1256 0.1656 0.3437 0.001
12 0.47767141461372375 0.1293 0.1701 0.2947 0.001
13 0.48009705543518066 0.1248 0.1677 0.6136 0.001
14 0.4954195022583008 0.1253 0.1669 inf 0.001
15 0.4812238812446594 0.1254 0.1662 inf 0.001
16 0.4858487546443939 0.1243 0.1656 inf 0.0001
17 0.47084349393844604 0.1223 0.1628 0.4165 0.0001
18 0.4707622528076172 0.1216 0.1626 0.4066 0.0001
19 0.47095733880996704 0.1227 0.1632 0.3185 0.0001
20 0.4696938395500183 0.1205 0.1620 0.4651 0.0001
21 0.46922874450683594 0.1216 0.1614 0.3773 0.0001
22 0.4685634672641754 0.1203 0.1609 0.4611 0.0001
23 0.47018975019454956 0.1226 0.1621 0.2499 0.0001
24 0.4705464243888855 0.1213 0.1628 0.3702 0.0001
25 0.4678299129009247 0.1188 0.1601 0.5133 0.0001
26 0.46802961826324463 0.1179 0.1604 0.5665 0.0001
27 0.4680938124656677 0.1200 0.1604 0.4242 0.0001
28 0.4693257212638855 0.1215 0.1616 0.2968 0.0001
29 0.46847742795944214 0.1197 0.1607 0.3925 0.0001
30 0.46944141387939453 0.1221 0.1614 0.2495 0.0001
31 0.4678958058357239 0.1185 0.1601 0.4510 0.0001
32 0.46778997778892517 0.1193 0.1601 0.3886 1e-05
33 0.4686955511569977 0.1202 0.1606 0.3132 1e-05
34 0.46784329414367676 0.1195 0.1601 0.3958 1e-05
35 0.4671097695827484 0.1180 0.1595 0.4579 1e-05
36 0.46735426783561707 0.1184 0.1595 0.4391 1e-05
37 0.468018501996994 0.1191 0.1600 0.3633 1e-05
38 0.46701580286026 0.1186 0.1592 0.4303 1e-05
39 0.4673251509666443 0.1187 0.1596 0.4562 1e-05
40 0.4673212468624115 0.1189 0.1594 0.4065 1e-05
41 0.4677547216415405 0.1206 0.1599 0.3336 1e-05
42 0.4671882390975952 0.1178 0.1597 0.5312 1e-05
43 0.46716412901878357 0.1185 0.1592 0.3924 1e-05
44 0.4678168296813965 0.1194 0.1602 0.4259 1e-05
45 0.46699702739715576 0.1172 0.1594 0.5214 1.0000000000000002e-06
46 0.46712958812713623 0.1188 0.1594 0.4175 1.0000000000000002e-06
47 0.4666382074356079 0.1188 0.1589 0.4446 1.0000000000000002e-06
48 0.46714723110198975 0.1180 0.1597 0.5755 1.0000000000000002e-06
49 0.46758702397346497 0.1192 0.1600 0.4304 1.0000000000000002e-06
50 0.46752068400382996 0.1204 0.1595 0.3337 1.0000000000000002e-06
51 0.46691644191741943 0.1181 0.1591 0.3955 1.0000000000000002e-06
52 0.466439425945282 0.1175 0.1588 0.4761 1.0000000000000002e-06
53 0.4667709469795227 0.1189 0.1590 0.4327 1.0000000000000002e-06
54 0.46701404452323914 0.1187 0.1592 0.3725 1.0000000000000002e-06
55 0.467383474111557 0.1199 0.1595 0.3841 1.0000000000000002e-06
56 0.46739572286605835 0.1190 0.1596 0.3822 1.0000000000000002e-06
57 0.46702033281326294 0.1186 0.1593 0.4675 1.0000000000000002e-06
58 0.46735846996307373 0.1189 0.1596 0.3738 1.0000000000000002e-06
59 0.46666717529296875 0.1185 0.1589 0.4204 1.0000000000000002e-07
60 0.46685320138931274 0.1178 0.1592 0.4532 1.0000000000000002e-07
61 0.46734780073165894 0.1189 0.1596 0.4032 1.0000000000000002e-07
62 0.4673011302947998 0.1189 0.1595 0.3407 1.0000000000000002e-07

Framework Versions

  • Transformers: 4.41.0
  • Pytorch: 2.5.0+cu124
  • Datasets: 3.0.2
  • Tokenizers: 0.19.1