Pythia-70m finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-70m for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-70m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.1724 ± 0.0110
none 0 acc_norm 0.2201 ± 0.0121
arc_easy 1 none 0 acc 0.3350 ± 0.0097
none 0 acc_norm 0.3380 ± 0.0097
boolq 2 none 0 acc 0.4315 ± 0.0087
hellaswag 1 none 0 acc 0.2614 ± 0.0044
none 0 acc_norm 0.2665 ± 0.0044
lambada_openai 1 none 0 perplexity 5951.7544 ± 428.5435
none 0 acc 0.0309 ± 0.0024
openbookqa 1 none 0 acc 0.1460 ± 0.0158
none 0 acc_norm 0.2440 ± 0.0192
piqa 1 none 0 acc 0.5550 ± 0.0116
none 0 acc_norm 0.5501 ± 0.0116
sciq 1 none 0 acc 0.4010 ± 0.0155
none 0 acc_norm 0.5070 ± 0.0158
wikitext 2 none 0 word_perplexity 547.6920 ± N/A
none 0 byte_perplexity 3.2518 ± N/A
none 0 bits_per_byte 1.7012 ± N/A
winogrande 1 none 0 acc 0.4822 ± 0.0140

hf (pretrained=lomahony/pythia-70m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.1886 ± 0.0114
none 5 acc_norm 0.2338 ± 0.0124
arc_easy 1 none 5 acc 0.3346 ± 0.0097
none 5 acc_norm 0.3308 ± 0.0097
boolq 2 none 5 acc 0.4028 ± 0.0086
hellaswag 1 none 5 acc 0.2617 ± 0.0044
none 5 acc_norm 0.2648 ± 0.0044
lambada_openai 1 none 5 perplexity 22676.7987 ± 1626.4435
none 5 acc 0.0173 ± 0.0018
openbookqa 1 none 5 acc 0.1640 ± 0.0166
none 5 acc_norm 0.2460 ± 0.0193
piqa 1 none 5 acc 0.5528 ± 0.0116
none 5 acc_norm 0.5462 ± 0.0116
sciq 1 none 5 acc 0.3100 ± 0.0146
none 5 acc_norm 0.4220 ± 0.0156
wikitext 2 none 5 word_perplexity 547.6920 ± N/A
none 5 byte_perplexity 3.2518 ± N/A
none 5 bits_per_byte 1.7012 ± N/A
winogrande 1 none 5 acc 0.5201 ± 0.0140
Downloads last month
142
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-70m-helpful-dpo

Collection including lomahony/pythia-70m-helpful-dpo