Pythia-2.8b supervised finetuned using TRLx library with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-2.8b for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-2.8b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2901 ± 0.0133
none 0 acc_norm 0.3404 ± 0.0138
arc_easy 1 none 0 acc 0.6469 ± 0.0098
none 0 acc_norm 0.5766 ± 0.0101
boolq 2 none 0 acc 0.6361 ± 0.0084
hellaswag 1 none 0 acc 0.4557 ± 0.0050
none 0 acc_norm 0.5984 ± 0.0049
lambada_openai 1 none 0 perplexity 5.2226 ± 0.1377
none 0 acc 0.6210 ± 0.0068
openbookqa 1 none 0 acc 0.2640 ± 0.0197
none 0 acc_norm 0.3760 ± 0.0217
piqa 1 none 0 acc 0.7481 ± 0.0101
none 0 acc_norm 0.7481 ± 0.0101
sciq 1 none 0 acc 0.8800 ± 0.0103
none 0 acc_norm 0.8180 ± 0.0122
wikitext 2 none 0 word_perplexity 13.4928 ± N/A
none 0 byte_perplexity 1.6268 ± N/A
none 0 bits_per_byte 0.7020 ± N/A
winogrande 1 none 0 acc 0.6125 ± 0.0137

hf (pretrained=lomahony/pythia-2.8b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.3285 ± 0.0137
none 5 acc_norm 0.3677 ± 0.0141
arc_easy 1 none 5 acc 0.6873 ± 0.0095
none 5 acc_norm 0.6835 ± 0.0095
boolq 2 none 5 acc 0.6670 ± 0.0082
hellaswag 1 none 5 acc 0.4542 ± 0.0050
none 5 acc_norm 0.5963 ± 0.0049
lambada_openai 1 none 5 perplexity 7.4076 ± 0.2095
none 5 acc 0.5486 ± 0.0069
openbookqa 1 none 5 acc 0.2680 ± 0.0198
none 5 acc_norm 0.3620 ± 0.0215
piqa 1 none 5 acc 0.7568 ± 0.0100
none 5 acc_norm 0.7486 ± 0.0101
sciq 1 none 5 acc 0.9380 ± 0.0076
none 5 acc_norm 0.9330 ± 0.0079
wikitext 2 none 5 word_perplexity 13.4928 ± N/A
none 5 byte_perplexity 1.6268 ± N/A
none 5 bits_per_byte 0.7020 ± N/A
winogrande 1 none 5 acc 0.5935 ± 0.0138
Downloads last month
316
Safetensors
Model size
2.78B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lomahony/pythia-2.8b-helpful-sft

Quantizations
1 model

Dataset used to train lomahony/pythia-2.8b-helpful-sft

Collection including lomahony/pythia-2.8b-helpful-sft