metadata
language:
- en
tags:
- pytorch
- causal-lm
- pythia
license: apache-2.0
datasets:
- Anthropic/hh-rlhf
Pythia-160m finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.
Checkpoints are also uploaded.
Fully reproducible finetuning code is available on GitHub
See Pythia-160m for model details (paper).
See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.
You can cite these models if they are helpful as follows:
@inproceedings{o2024attributing, title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, year={2024} }
hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_challenge | 1 | none | 0 | acc | 0.2125 | ± | 0.0120 |
none | 0 | acc_norm | 0.2312 | ± | 0.0123 | ||
arc_easy | 1 | none | 0 | acc | 0.3965 | ± | 0.0100 |
none | 0 | acc_norm | 0.3830 | ± | 0.0100 | ||
boolq | 2 | none | 0 | acc | 0.5853 | ± | 0.0086 |
hellaswag | 1 | none | 0 | acc | 0.2811 | ± | 0.0045 |
none | 0 | acc_norm | 0.2940 | ± | 0.0045 | ||
lambada_openai | 1 | none | 0 | perplexity | 444.4464 | ± | 24.5439 |
none | 0 | acc | 0.1034 | ± | 0.0042 | ||
openbookqa | 1 | none | 0 | acc | 0.1500 | ± | 0.0160 |
none | 0 | acc_norm | 0.2480 | ± | 0.0193 | ||
piqa | 1 | none | 0 | acc | 0.5947 | ± | 0.0115 |
none | 0 | acc_norm | 0.5876 | ± | 0.0115 | ||
sciq | 1 | none | 0 | acc | 0.5880 | ± | 0.0156 |
none | 0 | acc_norm | 0.6180 | ± | 0.0154 | ||
wikitext | 2 | none | 0 | word_perplexity | 88.8633 | ± | N/A |
none | 0 | byte_perplexity | 2.3143 | ± | N/A | ||
none | 0 | bits_per_byte | 1.2106 | ± | N/A | ||
winogrande | 1 | none | 0 | acc | 0.4980 | ± | 0.0141 |
hf (pretrained=lomahony/pythia-160m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
---|---|---|---|---|---|---|---|
arc_challenge | 1 | none | 5 | acc | 0.1928 | ± | 0.0115 |
none | 5 | acc_norm | 0.2398 | ± | 0.0125 | ||
arc_easy | 1 | none | 5 | acc | 0.3678 | ± | 0.0099 |
none | 5 | acc_norm | 0.3657 | ± | 0.0099 | ||
boolq | 2 | none | 5 | acc | 0.5841 | ± | 0.0086 |
hellaswag | 1 | none | 5 | acc | 0.2807 | ± | 0.0045 |
none | 5 | acc_norm | 0.2876 | ± | 0.0045 | ||
lambada_openai | 1 | none | 5 | perplexity | 1607.2529 | ± | 88.3065 |
none | 5 | acc | 0.0574 | ± | 0.0032 | ||
openbookqa | 1 | none | 5 | acc | 0.1580 | ± | 0.0163 |
none | 5 | acc_norm | 0.2400 | ± | 0.0191 | ||
piqa | 1 | none | 5 | acc | 0.5958 | ± | 0.0114 |
none | 5 | acc_norm | 0.5773 | ± | 0.0115 | ||
sciq | 1 | none | 5 | acc | 0.5110 | ± | 0.0158 |
none | 5 | acc_norm | 0.5740 | ± | 0.0156 | ||
wikitext | 2 | none | 5 | word_perplexity | 88.8633 | ± | N/A |
none | 5 | byte_perplexity | 2.3143 | ± | N/A | ||
none | 5 | bits_per_byte | 1.2106 | ± | N/A | ||
winogrande | 1 | none | 5 | acc | 0.5162 | ± | 0.0140 |