|
--- |
|
language: |
|
- en |
|
tags: |
|
- pytorch |
|
- causal-lm |
|
- pythia |
|
license: apache-2.0 |
|
datasets: |
|
- Anthropic/hh-rlhf |
|
--- |
|
|
|
[Pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) supervised finetuned using TRLx library with the helpful subset of [Anthropic-hh-rlhf dataset](https://huggingface.co/datasets/Anthropic/hh-rlhf) for 1 epoch. |
|
|
|
Checkpoints are also uploaded. |
|
|
|
Fully reproducible finetuning code is available on [GitHub](https://github.com/lauraaisling/trlx-pythia/tree/main) |
|
|
|
[wandb log](https://wandb.ai/lauraomahony999/pythia-sft/runs/ydaj2ks8) |
|
|
|
See [Pythia-1.4b](https://huggingface.co/EleutherAI/pythia-1.4b) for model details [(paper)](https://arxiv.org/abs/2101.00027). |
|
|
|
See further details of these models in the paper [Attributing Mode Collapse in the Fine-Tuning of Large Language Models](https://openreview.net/pdf?id=3pDMYjpOxk). |
|
|
|
You can cite these models if they are helpful as follows: |
|
|
|
<pre> |
|
@inproceedings{o2024attributing, |
|
title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models}, |
|
author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella}, |
|
booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop}, |
|
year={2024} |
|
} |
|
</pre> |
|
|
|
hf (pretrained=lomahony/pythia-1.4b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 0|acc | 0.2679|± |0.0129| |
|
| | |none | 0|acc_norm | 0.2978|± |0.0134| |
|
|arc_easy | 1|none | 0|acc | 0.6120|± |0.0100| |
|
| | |none | 0|acc_norm | 0.5282|± |0.0102| |
|
|boolq | 2|none | 0|acc | 0.6260|± |0.0085| |
|
|hellaswag | 1|none | 0|acc | 0.4097|± |0.0049| |
|
| | |none | 0|acc_norm | 0.5212|± |0.0050| |
|
|lambada_openai| 1|none | 0|perplexity | 6.4836|± |0.1838| |
|
| | |none | 0|acc | 0.5789|± |0.0069| |
|
|openbookqa | 1|none | 0|acc | 0.2120|± |0.0183| |
|
| | |none | 0|acc_norm | 0.3340|± |0.0211| |
|
|piqa | 1|none | 0|acc | 0.7100|± |0.0106| |
|
| | |none | 0|acc_norm | 0.7144|± |0.0105| |
|
|sciq | 1|none | 0|acc | 0.8540|± |0.0112| |
|
| | |none | 0|acc_norm | 0.7830|± |0.0130| |
|
|wikitext | 2|none | 0|word_perplexity|15.8394|± |N/A | |
|
| | |none | 0|byte_perplexity| 1.6763|± |N/A | |
|
| | |none | 0|bits_per_byte | 0.7453|± |N/A | |
|
|winogrande | 1|none | 0|acc | 0.5872|± |0.0138| |
|
|
|
hf (pretrained=lomahony/pythia-1.4b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16 |
|
| Tasks |Version|Filter|n-shot| Metric | Value | |Stderr| |
|
|--------------|------:|------|-----:|---------------|------:|---|------| |
|
|arc_challenge | 1|none | 5|acc | 0.2892|± |0.0133| |
|
| | |none | 5|acc_norm | 0.3097|± |0.0135| |
|
|arc_easy | 1|none | 5|acc | 0.6444|± |0.0098| |
|
| | |none | 5|acc_norm | 0.6309|± |0.0099| |
|
|boolq | 2|none | 5|acc | 0.6333|± |0.0084| |
|
|hellaswag | 1|none | 5|acc | 0.4065|± |0.0049| |
|
| | |none | 5|acc_norm | 0.5215|± |0.0050| |
|
|lambada_openai| 1|none | 5|perplexity | 9.7040|± |0.2887| |
|
| | |none | 5|acc | 0.4951|± |0.0070| |
|
|openbookqa | 1|none | 5|acc | 0.2220|± |0.0186| |
|
| | |none | 5|acc_norm | 0.3100|± |0.0207| |
|
|piqa | 1|none | 5|acc | 0.7029|± |0.0107| |
|
| | |none | 5|acc_norm | 0.7127|± |0.0106| |
|
|sciq | 1|none | 5|acc | 0.9170|± |0.0087| |
|
| | |none | 5|acc_norm | 0.9160|± |0.0088| |
|
|wikitext | 2|none | 5|word_perplexity|15.8394|± |N/A | |
|
| | |none | 5|byte_perplexity| 1.6763|± |N/A | |
|
| | |none | 5|bits_per_byte | 0.7453|± |N/A | |
|
|winogrande | 1|none | 5|acc | 0.5699|± |0.0139| |
|
|
|
|