license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: fr
datasets:
- lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl>
» (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de
l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en
un tonnerre terrifiant », etc.
example_title: Question Generation Example 1
- text: >-
Ce black dog peut être lié à des évènements traumatisants issus du monde
extérieur, tels que son renvoi de l'Amirauté après la catastrophe des
Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par
l'électorat en juillet 1945.
example_title: Question Generation Example 2
- text: contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mt5-small-frquad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_frquad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.0855433375613263
- name: ROUGE-L
type: rouge-l
value: 0.28563221971096636
- name: METEOR
type: meteor
value: 0.17511468784257161
- name: BERTScore
type: bertscore
value: 0.8070819788573244
- name: MoverScore
type: moverscore
value: 0.5650286067741268
Model Card of lmqg/mt5-small-frquad
This model is fine-tuned version of google/mt5-small for question generation task on the
lmqg/qg_frquad (dataset_name: default) via lmqg
.
Please cite our paper if you use the model (TBA).
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
Overview
- Language model: google/mt5-small
- Language: fr
- Training data: lmqg/qg_frquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: TBA
Usage
from transformers import pipeline
model_path = 'lmqg/mt5-small-frquad'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.')
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_frquad | default | 0.086 | 0.286 | 0.175 | 0.807 | 0.565 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 14
- batch: 64
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }