mt5-small-frquad-qg / README.md
asahi417's picture
model update
f4764be
|
raw
history blame
4.94 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: fr
datasets:
  - lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl>
      » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de
      l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en
      un tonnerre terrifiant », etc.
    example_title: Question Generation Example 1
  - text: >-
      Ce black dog peut être lié à des évènements traumatisants issus du monde
      extérieur, tels que son renvoi de l'Amirauté après la catastrophe des
      Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par
      l'électorat en juillet 1945.
    example_title: Question Generation Example 2
  - text: contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-frquad
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_frquad
          type: default
          args: default
        metrics:
          - name: BLEU4
            type: bleu4
            value: 0.0855433375613263
          - name: ROUGE-L
            type: rouge-l
            value: 0.28563221971096636
          - name: METEOR
            type: meteor
            value: 0.17511468784257161
          - name: BERTScore
            type: bertscore
            value: 0.8070819788573244
          - name: MoverScore
            type: moverscore
            value: 0.5650286067741268

Model Card of lmqg/mt5-small-frquad

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg.

Please cite our paper if you use the model (TBA).


@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

Overview

Usage


from transformers import pipeline

model_path = 'lmqg/mt5-small-frquad'
pipe = pipeline("text2text-generation", model_path)

# Question Generation
question = pipe('Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.')

Evaluation Metrics

Metrics

Dataset Type BLEU4 ROUGE-L METEOR BERTScore MoverScore Link
lmqg/qg_frquad default 0.086 0.286 0.175 0.807 0.565 link

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_frquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 14
  • batch: 64
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative, title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation", author = "Ushio, Asahi and Alva-Manchego, Fernando and Camacho-Collados, Jose", booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing", month = dec, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", }