mt5-small-frquad-qg / README.md
asahi417's picture
model update
31ddf78
|
raw
history blame
9.88 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: fr
datasets:
  - lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: >-
      Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl>
      » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de
      l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en
      un tonnerre terrifiant », etc.
    example_title: Question Generation Example 1
  - text: >-
      Ce black dog peut être lié à des évènements traumatisants issus du monde
      extérieur, tels que son renvoi de l'Amirauté après la catastrophe des
      Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par
      l'électorat en juillet 1945.
    example_title: Question Generation Example 2
  - text: contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-small-frquad-qg
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_frquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 8.55
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 28.56
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 17.51
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 80.71
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 56.5
          - name: BLEU4 (Question & Answer Generation)
            type: bleu4_question_answer_generation
            value: 13.83
          - name: ROUGE-L (Question & Answer Generation)
            type: rouge_l_question_answer_generation
            value: 42.57
          - name: METEOR (Question & Answer Generation)
            type: meteor_question_answer_generation
            value: 34.29
          - name: BERTScore (Question & Answer Generation)
            type: bertscore_question_answer_generation
            value: 88.51
          - name: MoverScore (Question & Answer Generation)
            type: moverscore_question_answer_generation
            value: 62.42
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
            value: 88.52
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
            value: 88.51
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_gold_answer
            value: 88.53
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
            value: 62.46
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_gold_answer
            value: 62.45
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_gold_answer
            value: 62.46

Model Card of lmqg/mt5-small-frquad-qg

This model is fine-tuned version of google/mt5-small for question generation task on the lmqg/qg_frquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qg")

# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

Evaluation

Score Type Dataset
BERTScore 80.71 default lmqg/qg_frquad
Bleu_1 29.26 default lmqg/qg_frquad
Bleu_2 17.56 default lmqg/qg_frquad
Bleu_3 12.03 default lmqg/qg_frquad
Bleu_4 8.55 default lmqg/qg_frquad
METEOR 17.51 default lmqg/qg_frquad
MoverScore 56.5 default lmqg/qg_frquad
ROUGE_L 28.56 default lmqg/qg_frquad
  • Metric (Question & Answer Generation): QAG metrics are computed with the gold answer and generated question on it for this model, as the model cannot provide an answer. raw metric file
Score Type Dataset
BERTScore 88.51 default lmqg/qg_frquad
Bleu_1 39.78 default lmqg/qg_frquad
Bleu_2 27.56 default lmqg/qg_frquad
Bleu_3 19.54 default lmqg/qg_frquad
Bleu_4 13.83 default lmqg/qg_frquad
METEOR 34.29 default lmqg/qg_frquad
MoverScore 62.42 default lmqg/qg_frquad
QAAlignedF1Score (BERTScore) 88.52 default lmqg/qg_frquad
QAAlignedF1Score (MoverScore) 62.46 default lmqg/qg_frquad
QAAlignedPrecision (BERTScore) 88.53 default lmqg/qg_frquad
QAAlignedPrecision (MoverScore) 62.46 default lmqg/qg_frquad
QAAlignedRecall (BERTScore) 88.51 default lmqg/qg_frquad
QAAlignedRecall (MoverScore) 62.45 default lmqg/qg_frquad
ROUGE_L 42.57 default lmqg/qg_frquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_frquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-small
  • max_length: 512
  • max_length_output: 32
  • epoch: 14
  • batch: 64
  • lr: 0.001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 1
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}