File size: 10,949 Bytes
642e0ea abccf16 642e0ea abccf16 642e0ea abccf16 642e0ea b430c2f 642e0ea 5d8213b 96db19a 5d8213b 96db19a 5d8213b 96db19a 5d8213b 96db19a 5d8213b 96db19a b6feb91 31ddf78 b6feb91 31ddf78 b6feb91 31ddf78 b6feb91 31ddf78 b6feb91 31ddf78 b6feb91 31ddf78 b6feb91 642e0ea b430c2f 96db19a 642e0ea 1cbeb6a 642e0ea 1cbeb6a 642e0ea 1cbeb6a 96db19a 1cbeb6a b430c2f 96db19a 1cbeb6a 96db19a 1cbeb6a 642e0ea 1cbeb6a 96db19a b430c2f 96db19a f4764be 642e0ea 96db19a 642e0ea b430c2f 642e0ea 96db19a 642e0ea b6feb91 8b9c825 96db19a 8b9c825 642e0ea b6feb91 642e0ea b430c2f 642e0ea 1cbeb6a f4764be 1cbeb6a f4764be 1cbeb6a f4764be 1cbeb6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: fr
datasets:
- lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."
example_title: "Question Generation Example 1"
- text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945."
example_title: "Question Generation Example 2"
- text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-frquad-qg
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_frquad
type: default
args: default
metrics:
- name: BLEU4 (Question Generation)
type: bleu4_question_generation
value: 8.55
- name: ROUGE-L (Question Generation)
type: rouge_l_question_generation
value: 28.56
- name: METEOR (Question Generation)
type: meteor_question_generation
value: 17.51
- name: BERTScore (Question Generation)
type: bertscore_question_generation
value: 80.71
- name: MoverScore (Question Generation)
type: moverscore_question_generation
value: 56.5
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.52
- name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.51
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
value: 88.53
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 62.46
- name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 62.45
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
value: 62.46
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
value: 79.72
- name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
value: 82.06
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
value: 77.58
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
value: 53.94
- name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
value: 55.32
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
value: 52.7
---
# Model Card of `lmqg/mt5-small-frquad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** fr
- **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qg")
# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")
```
- With `transformers`
```python
from transformers import pipeline
pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")
```
## Evaluation
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json)
| | Score | Type | Dataset |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore | 80.71 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_1 | 29.26 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_2 | 17.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_3 | 12.03 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_4 | 8.55 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| METEOR | 17.51 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| MoverScore | 56.5 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| ROUGE_L | 28.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_frquad.default.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 88.52 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedF1Score (MoverScore) | 62.46 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (BERTScore) | 88.53 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (MoverScore) | 62.46 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (BERTScore) | 88.51 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (MoverScore) | 62.45 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-small-frquad-ae`](https://huggingface.co/lmqg/mt5-small-frquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_frquad.default.lmqg_mt5-small-frquad-ae.json)
| | Score | Type | Dataset |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore) | 79.72 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedF1Score (MoverScore) | 53.94 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (BERTScore) | 77.58 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (MoverScore) | 52.7 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (BERTScore) | 82.06 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (MoverScore) | 55.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_frquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 14
- batch: 64
- lr: 0.001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 1
- label_smoothing: 0.15
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/trainer_config.json).
## Citation
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
```
|