File size: 10,949 Bytes
642e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abccf16
642e0ea
abccf16
642e0ea
abccf16
642e0ea
 
b430c2f
642e0ea
 
 
 
 
 
 
 
 
5d8213b
 
96db19a
5d8213b
 
96db19a
5d8213b
 
96db19a
5d8213b
 
96db19a
5d8213b
 
96db19a
b6feb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ddf78
 
b6feb91
31ddf78
 
b6feb91
31ddf78
 
b6feb91
31ddf78
 
b6feb91
31ddf78
 
b6feb91
31ddf78
 
b6feb91
642e0ea
 
b430c2f
96db19a
642e0ea
 
 
 
 
 
 
 
1cbeb6a
642e0ea
 
1cbeb6a
642e0ea
1cbeb6a
96db19a
1cbeb6a
b430c2f
96db19a
1cbeb6a
96db19a
1cbeb6a
 
642e0ea
1cbeb6a
 
 
96db19a
b430c2f
96db19a
f4764be
642e0ea
 
96db19a
642e0ea
 
b430c2f
642e0ea
96db19a
 
 
 
 
 
 
 
 
 
642e0ea
 
b6feb91
8b9c825
96db19a
 
 
 
 
 
 
 
8b9c825
642e0ea
b6feb91
 
 
 
 
 
 
 
 
 
 
 
642e0ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b430c2f
642e0ea
 
1cbeb6a
f4764be
1cbeb6a
f4764be
1cbeb6a
f4764be
 
 
 
 
 
 
 
1cbeb6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: fr
datasets:
- lmqg/qg_frquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc."
  example_title: "Question Generation Example 1" 
- text: "Ce black dog peut être lié à des évènements traumatisants issus du monde extérieur, tels que son renvoi de l'Amirauté après la catastrophe des Dardanelles, lors de la <hl> Grande Guerre <hl> de 14-18, ou son rejet par l'électorat en juillet 1945."
  example_title: "Question Generation Example 2" 
- text: "contre <hl> Normie Smith <hl> et 15 000 dollars le 28 novembre 1938."
  example_title: "Question Generation Example 3" 
model-index:
- name: lmqg/mt5-small-frquad-qg
  results:
  - task:
      name: Text2text Generation
      type: text2text-generation
    dataset:
      name: lmqg/qg_frquad
      type: default
      args: default
    metrics:
    - name: BLEU4 (Question Generation)
      type: bleu4_question_generation
      value: 8.55
    - name: ROUGE-L (Question Generation)
      type: rouge_l_question_generation
      value: 28.56
    - name: METEOR (Question Generation)
      type: meteor_question_generation
      value: 17.51
    - name: BERTScore (Question Generation)
      type: bertscore_question_generation
      value: 80.71
    - name: MoverScore (Question Generation)
      type: moverscore_question_generation
      value: 56.5
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 88.52
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 88.51
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
      value: 88.53
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 62.46
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 62.45
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation (with Gold Answer)) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
      value: 62.46
    - name: QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
      value: 79.72
    - name: QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
      value: 82.06
    - name: QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_bertscore_question_answer_generation_gold_answer
      value: 77.58
    - name: QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
      value: 53.94
    - name: QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_recall_moverscore_question_answer_generation_gold_answer
      value: 55.32
    - name: QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold Answer]
      type: qa_aligned_precision_moverscore_question_answer_generation_gold_answer
      value: 52.7
---

# Model Card of `lmqg/mt5-small-frquad-qg`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).


### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)   
- **Language:** fr  
- **Training data:** [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)

### Usage
- With [`lmqg`](https://github.com/asahi417/lm-question-generation#lmqg-language-model-for-question-generation-)
```python
from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="fr", model="lmqg/mt5-small-frquad-qg")

# model prediction
questions = model.generate_q(list_context="Créateur » (Maker), lui aussi au singulier, « le Suprême Berger » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.", list_answer="le Suprême Berger")

```

- With `transformers`
```python
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-small-frquad-qg")
output = pipe("Créateur » (Maker), lui aussi au singulier, « <hl> le Suprême Berger <hl> » (The Great Shepherd) ; de l'autre, des réminiscences de la théologie de l'Antiquité : le tonnerre, voix de Jupiter, « Et souvent ta voix gronde en un tonnerre terrifiant », etc.")

```

## Evaluation


- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_frquad.default.json) 

|            |   Score | Type    | Dataset                                                          |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
| BERTScore  |   80.71 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_1     |   29.26 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_2     |   17.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_3     |   12.03 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| Bleu_4     |    8.55 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| METEOR     |   17.51 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| MoverScore |   56.5  | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| ROUGE_L    |   28.56 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |


- ***Metric (Question & Answer Generation, Reference Answer)***: Each question is generated from *the gold answer*. [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_frquad.default.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   88.52 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedF1Score (MoverScore)   |   62.46 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (BERTScore)  |   88.53 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (MoverScore) |   62.46 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (BERTScore)     |   88.51 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (MoverScore)    |   62.45 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |


- ***Metric (Question & Answer Generation, Pipeline Approach)***: Each question is generated on the answer generated by [`lmqg/mt5-small-frquad-ae`](https://huggingface.co/lmqg/mt5-small-frquad-ae). [raw metric file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/eval_pipeline/metric.first.answer.paragraph.questions_answers.lmqg_qg_frquad.default.lmqg_mt5-small-frquad-ae.json)

|                                 |   Score | Type    | Dataset                                                          |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
| QAAlignedF1Score (BERTScore)    |   79.72 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedF1Score (MoverScore)   |   53.94 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (BERTScore)  |   77.58 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedPrecision (MoverScore) |   52.7  | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (BERTScore)     |   82.06 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |
| QAAlignedRecall (MoverScore)    |   55.32 | default | [lmqg/qg_frquad](https://huggingface.co/datasets/lmqg/qg_frquad) |



## Training hyperparameters

The following hyperparameters were used during fine-tuning:
 - dataset_path: lmqg/qg_frquad
 - dataset_name: default
 - input_types: ['paragraph_answer']
 - output_types: ['question']
 - prefix_types: None
 - model: google/mt5-small
 - max_length: 512
 - max_length_output: 32
 - epoch: 14
 - batch: 64
 - lr: 0.001
 - fp16: False
 - random_seed: 1
 - gradient_accumulation_steps: 1
 - label_smoothing: 0.15

The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-frquad-qg/raw/main/trainer_config.json).

## Citation
```
@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}

```